Optical links are now to be found in short-haul industrial routes, as well as in long-haul telecommunications routes. In order to design and maintain these links, it is important to understand the operation of the individual system components, and this book provides the relevant information.
The advantages of optical communications are many: ultra-high speed, highly reliable information transmission, and cost-effective modulation and transmission links to name but a few. It is no surprise that optical fiber communications systems are now in extensive use all over the world. Along with software and microelectronics, optical communication represents a key technology of modern telecommunication systems. Optical Communications: Components and Systems provides the basic material required for advanced study in theory and applications of optical fiber and space communication systems. After a review of some fundamental background material, component-based chapters discuss all relevant passive and active optical and optoelectronic components used in point-to-point links and in networks. Systems chapters address the analysis and optimization of both incoherent and coherent systems, introduce fiber optic link design, and discuss physical limits. The authors also provide an overview of applications such as optical networks and optical free-space communications. The advanced interactive multimedia communications of today and the future rely on optical fiber and space communication techniques. Optical Communications: Components and Systems offers engineers and physicists a working reference for the selection and design of optical communication systems and provides engineering students with a valuable text that prepares them for work in this essential and rapidly growing field.
Introduction to Fiber-Optic Communications provides students with the most up-to-date, comprehensive coverage of modern optical fiber communications and applications, striking a fine balance between theory and practice that avoids excessive mathematics and derivations. Unlike other textbooks currently available, this book covers all of the important recent technologies and developments in the field, including electro-optic modulators, coherent optical systems, and silicon integrated photonic circuits. Filled with practical, relevant worked examples and exercise problems, the book presents complete coverage of the topics that optical and communications engineering students need to be successful. From principles of optical and optoelectronic components, to optical transmission system design, and from conventional optical fiber links, to more useful optical communication systems with advanced modulation formats and high-speed DSP, this book covers the necessities on the topic, even including today's important application areas of passive optical networks, datacenters and optical interconnections.
Optical Components for Communications is an incomparable book that provides the reader with an understanding of a highly technical subject in a way that is both academically sound and easy to read. Readers with a fundamental understanding of physics from an undergraduate degree will find Dr. Lin's explanation of the principles of quantum physics and optics in this book easy to grasp. This book is also exceptional in its ability to span a subject from the very abstract, fundamental principles of operations to the very specific real world applications of the technology.
2014A-8 The complete, up-to-date technical overview of optical communications. Fibre in the WAN, MAN, local loop, campus and LAN. Up-to-the-minute coverage of Wavelength Division Multiplexing. Previews today's advanced research--tomorrow's practical applications. Over the past 15 years, optical fibre's low cost, accuracy and enormous capacity has revolutionized wide area communications--making possible the Internet as we know it. Now a second fibre revolution is underway. Advanced technologies such as Wavelength Division Multiplexing (WDM) are adding even more capacity, and fibre is increasingly the media of choice in MANs, campuses, buildings, LANs--soon, even homes. If you need to understand the state-of-the-art in optical communications, Understanding Optical Communications is the most complete, up-to-date technical overview available. Fundamental principles and components of optical communications. Optical communications systems, interfaces and engineering challenges. FDDI, Ethernet on Fibre, ESCON, Fibre Channel, SONET/SDH and ATM. WDM: sparse and dense approaches, photonic networking, WDM for LANs and WDM standards. Fibre in the local loop, integration with HFC networks and passive optical networks. Understanding Optical Communications reviews key technical issues facing engineers as they extend fibre into new applications and markets. It presents an up-to-the-minute status report on WDM for LANs and MANs, including a rare glimpse at IBM's latest experimental systems. It points to the advanced research most likely to bear fruit: dark and spatial solitons, advanced fibres, plastic technologies, optical CDMA, TDM and packet-networks and more. Whether you're building optical systems or planning for them, this is the briefing you've been looking for.
This resource provides the latest details on 5th generation photonic systems that can be readily applied to projects in the field. Moreover, the book provides valuable, time-saving tools for network simulation and modeling. It includes coverage of optical signal transmission systems and networks; a wide range of critical methods and techniques, such as MIMO (multiple-input and multiple-output) by employing spatial modes in few-mode and multicore optical fiber; OFDM (orthogonal frequency-division multiplexing) utilized to enhance the spectral efficiency and to enable elastic optical networking schemes; and advanced modulation and coding schemes to approach the Shannon's channel capacity limit. There are detailed discussions on the basic principles and applications of high-speed digital signal processing, as well as description of the most relevant post-detection compensation techniques
* The most comprehensive introduction to optical communications available anywhere--from the author of Optical Fiber Communications, the field's leading text * Concise, illustrated module-style chapters quickly bring non-specialists up-to-speed * Extensive DWDM (Dense Wavelength Division Multiplexing) coverage * Advanced topics and limited math covered in side-bars' * Free space optical (wireless fiber optics)
Optoelectronic devices and fibre optics are the basis of cutting-edge communication systems. This monograph deals with the various components of these systems, including lasers, amplifiers, modulators, converters, filters, sensors, and more.
This comprehensive book makes the important technologies and mathematical concepts behind today's optical communications systems accessible and understandable to practicing and future electrical and communication engineers. Featuring nearly 400 figures and over 900 equations, the book provides the practical engineering details and mathematical tools necessary to analyze and design optical fiber systems.
Telecommunications have underpinned social interaction and economic activity since the 19th century and have been increasingly reliant on optical fibers since their initial commercial deployment by BT in 1983. Today, mobile phone networks, data centers, and broadband services that facilitate our entertainment, commerce, and increasingly health provision are built on hidden optical fiber networks. However, recently it emerged that the fiber network is beginning to fill up, leading to the talk of a capacity crunch where the capacity still grows but struggles to keep up with the increasing demand. This book, featuring contributions by the suppliers of widely deployed simulation software and academic authors, illustrates the origins of the limited performance of an optical fiber from the engineering, physics, and information theoretic viewpoints. Solutions are then discussed by pioneers in each of the respective fields, with near-term solutions discussed by industrially based authors, and more speculative high-potential solutions discussed by leading academic groups.