Despite a number of books on biophotonics imaging for medical diagnostics and therapy, the field still lacks a comprehensive imaging book that describes state-of-the-art biophotonics imaging approaches intensively developed in recent years. Addressing this shortfall, Advanced Biophotonics: Tissue Optical Sectioning presents contemporary methods and
Optical Coherence Tomography gives a broad treatment of the subject which will include 1)the optics, science, and physics needed to understand the technology 2) a description of applications with a critical look at how the technology will successfully address actual clinical need, and 3) a discussion of delivery of OCT to the patient, FDA approval and comparisons with available competing technologies. The required mathematical rigor will be present where needed but be presented in such a way that it will not prevent non-scientists and non-engineers from gaining a basic understanding of OCT and the applications as well as the issues of bringing the technology to the market. - Optical Coherence Tomography is a new medical high-resolution imaging technology which offers distinct advantages over current medical imaging technologies and is attracting a large number of researchers. - Provides non-scientists and non-engineers basic understanding of Optical Coherence Tomography applications and issues.
This book provides a state-of-the-art overview of the combined use of imaging modalities to obtain important functional and morphological information on intravascular disease and enhance disease detection. It discusses the integration of intravascular ultrasound (IVUS, intravascular optical coherence tomography (OCT), intravascular photoacoustic imaging (IVPA) and acoustic radiation force optical coherence elastography (ARF-OCE), and introduces the integration of multimodality imaging systems, such as IR and florescence. It includes the latest research advances and numerous imaging photos to offer readers insights into current intravascular applications. It is a valuable resource for students, scientists and physicians wanting to gain a deeper understanding of multimodality imaging tools.
This open access book provides a comprehensive overview of the application of the newest laser and microscope/ophthalmoscope technology in the field of high resolution imaging in microscopy and ophthalmology. Starting by describing High-Resolution 3D Light Microscopy with STED and RESOLFT, the book goes on to cover retinal and anterior segment imaging and image-guided treatment and also discusses the development of adaptive optics in vision science and ophthalmology. Using an interdisciplinary approach, the reader will learn about the latest developments and most up to date technology in the field and how these translate to a medical setting. High Resolution Imaging in Microscopy and Ophthalmology – New Frontiers in Biomedical Optics has been written by leading experts in the field and offers insights on engineering, biology, and medicine, thus being a valuable addition for scientists, engineers, and clinicians with technical and medical interest who would like to understand the equipment, the applications and the medical/biological background. Lastly, this book is dedicated to the memory of Dr. Gerhard Zinser, co-founder of Heidelberg Engineering GmbH, a scientist, a husband, a brother, a colleague, and a friend.
Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.
The first book to cover the groundbreaking development and clinical applications of Magnetic Resonance Elastography, this book is essential for all practitioners interested in this revolutionary diagnostic modality. The book is divided into three sections. The first covers the history of MRE. The second covers technique and clinical applications of MRE in the liver with respect to fibrosis, liver masses, and other diseases. Case descriptions are presented to give the reader a hands-on approach. The final section presents the techniques, sequence and preliminary results of applications in other areas of the body including muscle, brain, lung, heart, and breast.
This book covers multi-scale biomechanics for oncology, ranging from cells and tissues to whole organ. Topics covered include, but not limited to, biomaterials in mechano-oncology, non-invasive imaging techniques, mechanical models of cell migration, cancer cell mechanics, and platelet-based drug delivery for cancer applications. This is an ideal book for graduate students, biomedical engineers, and researchers in the field of mechanobiology and oncology. This book also: Describes how mechanical properties of cancer cells, the extracellular matrix, tumor microenvironment and immuno-editing, and fluid flow dynamics contribute to tumor progression and the metastatic process Provides the latest research on non-invasive imaging, including traction force microscopy and brillouin confocal microscopy Includes insight into NCIs’ role in supporting biomechanics in oncology research Details how biomaterials in mechano-oncology can be used as a means to tune materials to study cancer
Optical coherence tomography (OCT) is a promising non-invasive non-contact 3D imaging technique that can be used to evaluate and inspect material surfaces, multilayer polymer films, fiber coils, and coatings. OCT can be used for the examination of cultural heritage objects and 3D imaging of microstructures. With subsurface 3D fingerprint imaging capability, OCT could be a valuable tool for enhancing security in biometric applications. OCT can also be used for the evaluation of fastener flushness for improving aerodynamic performance of high-speed aircraft. More and more OCT non-medical applications are emerging. In this book, we present some recent advancements in OCT technology and non-medical applications.
This third edition of the biomedical optics classic Tissue Optics covers the continued intensive growth in tissue optics—in particular, the field of tissue diagnostics and imaging—that has occurred since 2007. As in the first two editions, Part I describes fundamentals and basic research, and Part II presents instrumentation and medical applications. However, for the reader’s convenience, this third edition has been reorganized into 14 chapters instead of 9. The chapters covering optical coherence tomography, digital holography and interferometry, controlling optical properties of tissues, nonlinear spectroscopy, and imaging have all been substantially updated. The book is intended for researchers, teachers, and graduate and undergraduate students specializing in the physics of living systems, biomedical optics and biophotonics, laser biophysics, and applications of lasers in biomedicine. It can also be used as a textbook for courses in medical physics, medical engineering, and medical biology.
While lecturing in recent months at a number of prominent institutions, I asked some of the residents and fellows whether and how they might benefit from a book on corneal biomechanics. The typical response was the look of a deer caught in the headlights as they tried to intuit the “appropriate” answer, but had little understanding or insight as to why this would be an important and useful knowledge base for them now, or in the future. I then posed the question differently. “Would a book that explained corneal biomechanical principles and testing devices and their application in detecting eyes at risk for developing keratoconus and post-LASIK ectasia, understanding the biomechanical impact of specific types of keratorefractive surgery and riboflavin UV-A corneal collagen cross-linking, and the impact of corneal biomechanics on the fidelity of intraocular pressure measurement and risk for glaucoma progression be of interest?” Framed in this context, the answer I got was a resounding, “Yes!” Therein lies a fundamental disconnect that highlights both the opportunity and need to educate all ophthalmologists about this nascent field. This comprehensive book is strengthened by the breadth of contributions from leading experts around the world and provides an important resource for ophthalmologists at all levels of training and experience. It gives a panoramic snapshot of our understanding of corneal biomechanics today, bridging the gap between theoretical principles, testing devices that are commercially available and in development as well as current and potential future clinical applications. While there has been a long-held appreciation that all types of keratorefractive surgery have an impact and interdependence on corneal biomechanics and wound healing, the initial finite element analyses that were applied to understand radial keratotomy were limited by incorrect assumptions that the cornea was a linear, elastic, homogenous, isotropic material.1 With the advent of excimer laser vision correction, critical observations indicated that Munnerlyn’s theoretic ablation profiles did not account for either lower or higher order (e.g. spherical aberration) refractive outcomes,2 suggesting that there were important components missing from the equation—e.g., corneal biomechanics and wound healing. In a seminal editorial, Roberts3 pointed out that the cornea is not a piece of plastic, but rather a material with viscoelastic qualities. Since that time, much has been learned about spatial and depth- related patterns of collagen orientation and interweaving, as well as the biomechanical response to different keratorefractive surgeries that sever tension-bearing lamellae, as the cornea responds to and redistributes stress induced by IOP, hydration, eye rubbing, blinking and extraocular muscle forces.3-6 The first reports of post-LASIK ectasia7 highlighted the need to identify a biomechanical signature of early keratoconus as well as corneas at high risk of developing ectasia irrespective of their current topography or tomography. The introduction of two instruments into clinical use—the Ocular Response Analyzer (ORA) and the Corneal Visualization Scheimpflug Technology (Corvis ST)—that allow measurement of various biomechanical metrics further catapulted the field. The availability of these instruments in routine clinical settings allowed the systematic study of the effect of age, collagen disorders, collagen cross-linking, corneal rings, flaps of various depths, contour, sidecut angulation, pockets, and flockets, just to name of few. Future application of biomechanics to the sclera may improve our understanding of the development and prevention of myopia, as well as scleral surgeries and treatments under development for presbyopia. It was appreciated by Goldmann and Schmidt that corneal thickness and curvature would influence the measurement of applanation tonometry. The recent ability to measure some corneal biomechanical metrics have led to IOP measurement that may be more immune both to their influence and the impact of central corneal thickness (CCT). Certain chapters in this book explain how a thin cornea could be stiffer than a thick one and that stiffness is also impacted by IOP, thereby precluding simplistic attempts to adjust IOP measurements using nomograms based upon CCT alone. Also highlighted is how corneal hysteresis, the ability of the cornea to absorb and dissipate energy during the bidirectional applanation response to a linear Gaussian air puff, appears to be an independent risk factor for glaucoma progression and rate of progression.9,10 This comprehensive book starts out with a section devoted to outlining basic biomechanical principles and theories, teaching us the language of what Dupps11 has referred to as “mechanospeak”, thus providing a context and common vocabulary to better comprehend the following chapters. By first defining basic concepts such as stress-strain relationships and creep, this theoretical basis is later applied to explain the pathogenesis of corneal diseases, e.g., explaining how a focal abnormality in corneal biomechanical properties precipitates a cycle of decompensation and localized thinning and steepening, clinically expressed as ectasia progression. These early chapters further detail biomechanical differences between in-vivo and ex-vivo testing, between human and animal corneas and sclera, and between methods of testing. The second section provides a thorough description of two FDA-approved devices to measure corneal biomechanics in the clinic (i.e., the ORA and the Corvis ST), as well as an overview of potential future technologies, including OCT with air puff stimulus, ocular pulse elastography, and Brilloiun microscopy. The third and final section of the book is a thorough treatise on how to interpret the metrics derived from the waveform provided by available clinical devices; their adjunct use in ectasia risk screening; the comparative biomechanical impact of various keratorefractive surgeries and corneal procedures such as PRK, LASIK, SMILE, and corneal collagen cross-linking; the impact of corneal biomechanics on IOP measurement; and potential biomechanical markers of enhanced susceptibility to glaucoma progression. This compendium of our current knowledge of corneal biomechanics, its measurement and application, provides a strong foundation to more fully understand advances in keratorefractive and corneal surgery, diseases, and treatments, all of which are interdependent on and influence inherent corneal biomechanical properties and behavior. Both the robust aspects and limitations of our current understanding are presented, including the challenge of creating accurate and predictive finite element models that incorporate the impact of IOP, corneal thickness, geometry, and scleral properties on corneal biomechanics. This book provides a key allowing clinical ophthalmologists and researchers to grasp the basics and nuances of this exciting field and to shape it as it evolves in the future.