Operator Theory for Electromagnetics

Operator Theory for Electromagnetics

Author: George W. Hanson

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 640

ISBN-13: 1475736797

DOWNLOAD EBOOK

This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.


Operator Theory for Electromagnetics

Operator Theory for Electromagnetics

Author: George W. Hanson

Publisher: Springer Science & Business Media

Published: 2001-10-12

Total Pages: 658

ISBN-13: 9780387952789

DOWNLOAD EBOOK

This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.


Electromagnetic Theory and Computation

Electromagnetic Theory and Computation

Author: Paul W. Gross

Publisher: Cambridge University Press

Published: 2004-06-14

Total Pages: 296

ISBN-13: 9780521801607

DOWNLOAD EBOOK

This book explores the connection between algebraic structures in topology and computational methods for 3-dimensional electric and magnetic field computation. The connection between topology and electromagnetism has been known since the 19th century, but there has been little exposition of its relevance to computational methods in modern topological language. This book is an effort to close that gap. It will be of interest to people working in finite element methods for electromagnetic computation and those who have an interest in numerical and industrial applications of algebraic topology.


Electromagnetic Frontier Theory Exploration

Electromagnetic Frontier Theory Exploration

Author: Changhong Liang

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-11-05

Total Pages: 388

ISBN-13: 3110527405

DOWNLOAD EBOOK

This book systematically introduces electromagnetic theories and their applications in practice: electrostatic energy, Poynting theorem, the polarization of waves, the conservation law, the electromagnetic symmetry, the conformal mapping method, the electromagnetic loss. The parameters and theorems of electromagnetic theories are discussed in detail, making the book an essential reference for researchers, and engineers in electromagnetics field.


A History of Vector Analysis

A History of Vector Analysis

Author: Michael J. Crowe

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 306

ISBN-13: 0486679101

DOWNLOAD EBOOK

Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.


Electromagnetic Theory for Electromagnetic Compatibility Engineers

Electromagnetic Theory for Electromagnetic Compatibility Engineers

Author: Tze-Chuen Toh

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 384

ISBN-13: 1466518162

DOWNLOAD EBOOK

Engineers and scientists who develop and install electronic devices and circuits need to have a solid understanding of electromagnetic theory and the electromagnetic behavior of devices and circuits. In particular, they must be well-versed in electromagnetic compatibility, which minimizes and controls the side effects of interconnected electric dev


Optical Waveguide Theory

Optical Waveguide Theory

Author: Yury Shestopalov

Publisher: Springer Nature

Published: 2022-03-26

Total Pages: 269

ISBN-13: 9811905843

DOWNLOAD EBOOK

This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.


Integral Equation Methods for Electromagnetic and Elastic Waves

Integral Equation Methods for Electromagnetic and Elastic Waves

Author: Weng Chew

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 241

ISBN-13: 3031017072

DOWNLOAD EBOOK

Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral equation research. Also, learning the fundamentals of linear elastic wave theory does not require a quantum leap for electromagnetic practitioners. Integral equation methods have been around for several decades, and their introduction to electromagnetics has been due to the seminal works of Richmond and Harrington in the 1960s. There was a surge in the interest in this topic in the 1980s (notably the work of Wilton and his coworkers) due to increased computing power. The interest in this area was on the wane when it was demonstrated that differential equation methods, with their sparse matrices, can solve many problems more efficiently than integral equation methods. Recently, due to the advent of fast algorithms, there has been a revival in integral equation methods in electromagnetics. Much of our work in recent years has been in fast algorithms for integral equations, which prompted our interest in integral equation methods. While previously, only tens of thousands of unknowns could be solved by integral equation methods, now, tens of millions of unknowns can be solved with fast algorithms. This has prompted new enthusiasm in integral equation methods. Table of Contents: Introduction to Computational Electromagnetics / Linear Vector Space, Reciprocity, and Energy Conservation / Introduction to Integral Equations / Integral Equations for Penetrable Objects / Low-Frequency Problems in Integral Equations / Dyadic Green's Function for Layered Media and Integral Equations / Fast Inhomogeneous Plane Wave Algorithm for Layered Media / Electromagnetic Wave versus Elastic Wave / Glossary of Acronyms


Theory and Phenomena of Metamaterials

Theory and Phenomena of Metamaterials

Author: Filippo Capolino

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 974

ISBN-13: 1420054260

DOWNLOAD EBOOK

Theory and Phenomena of Metamaterials offers an in-depth look at the theoretical background and basic properties of electromagnetic artificial materials, often called metamaterials. A volume in the Metamaterials Handbook, this book provides a comprehensive guide to working with metamaterials using topics presented in a concise review format along with numerous references. With contributions from leading researchers, this text covers all areas where artificial materials have been developed. Each chapter in the text features a concluding summary as well as various cross references to address a wide range of disciplines in a single volume.