Operator Theoretical Methods and Applications to Mathematical Physics

Operator Theoretical Methods and Applications to Mathematical Physics

Author: Israel Gohberg

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 472

ISBN-13: 3034879261

DOWNLOAD EBOOK

This volume is devoted to the life and work of the applied mathematician Professor Erhard Meister (1930-2001). He was a member of the editorial boards of this book series Operator The ory: Advances and Applications as well as of the journal Integral Equations and Operator Theory, both published by Birkhauser (now part of Springer-Verlag). Moreover he played a decisive role in the foundation of these two series by helping to establish contacts between Birkhauser and the founder and present chief editor of this book series after his emigration from Moldavia in 1974. The volume is divided into two parts. Part A contains reminiscences about the life of E. Meister including a short biography and an exposition of his professional work. Part B displays the wide range of his scientific interests through eighteen original papers contributed by authors with close scientific and personal relations to E. Meister. We hope that a great part of the numerous features of his life and work can be re-discovered from this book.


Operator Theory, Analysis and Mathematical Physics

Operator Theory, Analysis and Mathematical Physics

Author: Jan Janas

Publisher: Springer Science & Business Media

Published: 2007-04-29

Total Pages: 261

ISBN-13: 3764381353

DOWNLOAD EBOOK

This volume contains lectures delivered at the International Conference Operator Theory and its Applications in Mathematical Physics (OTAMP 2004), held at the Mathematical Research and Conference Center in Bedlewo near Poznan, Poland. The idea behind these lectures was to present interesting ramifications of operator methods in current research of mathematical physics.


Mathematical Methods in Physics

Mathematical Methods in Physics

Author: Philippe Blanchard

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 469

ISBN-13: 1461200490

DOWNLOAD EBOOK

Physics has long been regarded as a wellspring of mathematical problems. Mathematical Methods in Physics is a self-contained presentation, driven by historic motivations, excellent examples, detailed proofs, and a focus on those parts of mathematics that are needed in more ambitious courses on quantum mechanics and classical and quantum field theory. Aimed primarily at a broad community of graduate students in mathematics, mathematical physics, physics and engineering, as well as researchers in these disciplines.


Operator Methods in Mathematical Physics

Operator Methods in Mathematical Physics

Author: Jan Janas

Publisher: Springer Science & Business Media

Published: 2013-01-08

Total Pages: 184

ISBN-13: 3034805314

DOWNLOAD EBOOK

The conference Operator Theory, Analysis and Mathematical Physics – OTAMP is a regular biennial event devoted to mathematical problems on the border between analysis and mathematical physics. The current volume presents articles written by participants, mostly invited speakers, and is devoted to problems at the forefront of modern mathematical physics such as spectral properties of CMV matrices and inverse problems for the non-classical Schrödinger equation. Other contributions deal with equations from mathematical physics and study their properties using methods of spectral analysis. The volume explores several new directions of research and may serve as a source of new ideas and problems for all scientists interested in modern mathematical physics.


Topics in Operator Theory

Topics in Operator Theory

Author: Joseph A. Ball

Publisher: Springer Science & Business Media

Published: 2011-02-03

Total Pages: 447

ISBN-13: 3034601611

DOWNLOAD EBOOK

This is the second volume of a collection of original and review articles on recent advances and new directions in a multifaceted and interconnected area of mathematics and its applications. It encompasses many topics in theoretical developments in operator theory and its diverse applications in applied mathematics, physics, engineering, and other disciplines. The purpose is to bring in one volume many important original results of cutting edge research as well as authoritative review of recent achievements, challenges, and future directions in the area of operator theory and its applications.


Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics

Author: Gerald Teschl

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 322

ISBN-13: 0821846604

DOWNLOAD EBOOK

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).


Mathematical Methods in Physics

Mathematical Methods in Physics

Author: Philippe Blanchard

Publisher: Birkhäuser

Published: 2015-04-07

Total Pages: 598

ISBN-13: 3319140450

DOWNLOAD EBOOK

The second edition of this textbook presents the basic mathematical knowledge and skills that are needed for courses on modern theoretical physics, such as those on quantum mechanics, classical and quantum field theory, and related areas. The authors stress that learning mathematical physics is not a passive process and include numerous detailed proofs, examples, and over 200 exercises, as well as hints linking mathematical concepts and results to the relevant physical concepts and theories. All of the material from the first edition has been updated, and five new chapters have been added on such topics as distributions, Hilbert space operators, and variational methods. The text is divided into three parts: - Part I: A brief introduction to (Schwartz) distribution theory. Elements from the theories of ultra distributions and (Fourier) hyperfunctions are given in addition to some deeper results for Schwartz distributions, thus providing a rather comprehensive introduction to the theory of generalized functions. Basic properties and methods for distributions are developed with applications to constant coefficient ODEs and PDEs. The relation between distributions and holomorphic functions is considered, as well as basic properties of Sobolev spaces. - Part II: Fundamental facts about Hilbert spaces. The basic theory of linear (bounded and unbounded) operators in Hilbert spaces and special classes of linear operators - compact, Hilbert-Schmidt, trace class, and Schrödinger operators, as needed in quantum physics and quantum information theory – are explored. This section also contains a detailed spectral analysis of all major classes of linear operators, including completeness of generalized eigenfunctions, as well as of (completely) positive mappings, in particular quantum operations. - Part III: Direct methods of the calculus of variations and their applications to boundary- and eigenvalue-problems for linear and nonlinear partial differential operators. The authors conclude with a discussion of the Hohenberg-Kohn variational principle. The appendices contain proofs of more general and deeper results, including completions, basic facts about metrizable Hausdorff locally convex topological vector spaces, Baire’s fundamental results and their main consequences, and bilinear functionals. Mathematical Methods in Physics is aimed at a broad community of graduate students in mathematics, mathematical physics, quantum information theory, physics and engineering, as well as researchers in these disciplines. Expanded content and relevant updates will make this new edition a valuable resource for those working in these disciplines.


Non-Selfadjoint Operators in Quantum Physics

Non-Selfadjoint Operators in Quantum Physics

Author: Fabio Bagarello

Publisher: John Wiley & Sons

Published: 2015-07-24

Total Pages: 434

ISBN-13: 1118855264

DOWNLOAD EBOOK

A unique discussion of mathematical methods with applications to quantum mechanics Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects presents various mathematical constructions influenced by quantum mechanics and emphasizes the spectral theory of non-adjoint operators. Featuring coverage of functional analysis and algebraic methods in contemporary quantum physics, the book discusses the recent emergence of unboundedness of metric operators, which is a serious issue in the study of parity-time-symmetric quantum mechanics. The book also answers mathematical questions that are currently the subject of rigorous analysis with potentially significant physical consequences. In addition to prompting a discussion on the role of mathematical methods in the contemporary development of quantum physics, the book features: Chapter contributions written by well-known mathematical physicists who clarify numerous misunderstandings and misnomers while shedding light on new approaches in this growing area An overview of recent inventions and advances in understanding functional analytic and algebraic methods for non-selfadjoint operators as well as the use of Krein space theory and perturbation theory Rigorous support of the progress in theoretical physics of non-Hermitian systems in addition to mathematically justified applications in various domains of physics such as nuclear and particle physics and condensed matter physics An ideal reference, Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects is useful for researchers, professionals, and academics in applied mathematics and theoretical and/or applied physics who would like to expand their knowledge of classical applications of quantum tools to address problems in their research. Also a useful resource for recent and related trends, the book is appropriate as a graduate-level and/or PhD-level text for courses on quantum mechanics and mathematical models in physics.


Spectral Methods for Operators of Mathematical Physics

Spectral Methods for Operators of Mathematical Physics

Author: Jan Janas

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 247

ISBN-13: 3034879474

DOWNLOAD EBOOK

This book presents recent results in the following areas: spectral analysis of one-dimensional Schrödinger and Jacobi operators, discrete WKB analysis of solutions of second order difference equations, and applications of functional models of non-selfadjoint operators. Several developments treated appear for the first time in a book. It is addressed to a wide group of specialists working in operator theory or mathematical physics.