OpenAI GPT For Python Developers - 2nd Edition

OpenAI GPT For Python Developers - 2nd Edition

Author: Aymen El Amri

Publisher: Independently Published

Published: 2024-02-14

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

The knowledge you'll acquire from this guide will be applicable to the current families of GPT models (GPT-3, GPT-3.5, GPT-4, etc.) and will likely also be relevant to GPT-5, should it ever be released. OpenAI provides APIs (Application Programming Interfaces) to access their AI. The goal of an API is to abstract the underlying models by creating a universal interface for all versions, allowing users to use GPT regardless of its version. This guide aims to provide a comprehensive, step-by-step tutorial on how to utilize GPT-3.5 and GPT-4 in your projects via this API. It also covers other models, such as Whisper and Text-to-Speech. If you're developing a chatbot, an AI assistant, or a web application that utilizes AI-generated data, this guide will assist you in achieving your objectives. If you have a basic understanding of the Python programming language and are willing to learn a few additional techniques, such as using Pandas Dataframes and some NLP methods, you possess all the necessary tools to start building intelligent systems with OpenAI tools. Rest assured, you don't need to be a data scientist, machine learning engineer, or AI expert to comprehend and implement the concepts, techniques, and tutorials presented in this guide. The explanations provided are straightforward and easy to understand, featuring simple Python code, examples, and hands-on exercises. This guide emphasizes practical, hands-on learning and is designed to assist readers in building real-world applications. It is example-driven and provides numerous practical examples to help readers understand the concepts and apply them to real-life scenarios to solve real-world problems. By the end of your learning journey, you will have developed applications such as: Fine-tuned, domain-specific chatbots. An intelligent conversational system with memory and context. A semantic modern search engine using RAG and other techniques. An intelligent coffee recommendation system based on your taste. A chatbot assistant to assist with Linux commands A fine-tuned news category prediction system. An AI-to-AI autonomous discussion system to simulate human-like conversations or solve problems An AI-based mental health coach trained on a large dataset of mental health conversations and more! By reading this guide and following the examples, you will be able to: Understand the different models available, and how and when to use each one. Generate human-like text for various purposes, such as answering questions, creating content, and other creative uses. Control the creativity of GPT models and adopt the best practices to generate high-quality text. Transform and edit the text to perform translation, formatting, and other useful tasks. Optimize the performance of GPT models using various parameters and options such as max_tokens, temperature, top_p, n, stream, logprobs, stop, presence_penalty, frequency_penalty, best_of, and others. Stem, lemmatize and reduce your costs when using the API. Understand Context Stuffing, chaining, and practice prompt engineering. Implement a chatbot with memory and context. Create prediction algorithms and zero-shot techniques and evaluate their accuracy. Understand, practice, and improve few-shot learning. Understand fine-tuning and leverage its power to create your own fine-tuned models. Understand and use fine-tuning best practices Practice training and classification techniques using GPT. Understand embedding and how companies such as Tesla and Notion are using it. Understand and implement semantic search, RAG, and other advanced tools and concepts. Integrate a Vector Database (e.g.: Weaviate) with your intelligent systems.


OpenAI GPT For Python Developers

OpenAI GPT For Python Developers

Author: Aymen El Amri

Publisher: Packt Publishing Ltd

Published: 2024-05-21

Total Pages: 334

ISBN-13: 1836202407

DOWNLOAD EBOOK

"OpenAI GPT for Python Developers" is your comprehensive guide to mastering the integration of OpenAI's GPT models into your Python projects, enhancing applications with various AI capabilities from chat completions to AI avatars. Key Features Strategies for optimizing and personalizing GPT models for specific applications. Insights into integrating additional OpenAI technologies like Whisper and Weaviate. Strong emphasis on responsible AI development and deployment. Book Description“OpenAI GPT for Python Developers” is meticulously crafted to provide Python developers with a deep dive into the mechanics and applications of GPT technology, beginning with a captivating narrative on the evolution of OpenAI and the fundamental workings of GPT models. As readers progress, they will be expertly guided through the essential steps of setting up a development environment tailored for AI innovations, coupled with insightful advice on selecting the most appropriate GPT model to suit specific project needs. The guide progresses into practical tutorials that cover the implementation of chat completions and the art of prompt engineering, providing a solid foundation in harnessing the capabilities of GPT for generating human-like text responses. Practical applications are further expanded with discussions on the creation of autonomous AI-to-AI dialogues, the development of AI avatars, and the strategic use of AI in interactive applications. In addition to technical skills, this book addresses the ethical implications and prospects of AI technologies, encouraging a holistic view of AI development. The guide is enriched with detailed examples, step-by-step tutorials, and comprehensive explanations that illuminate the theoretical aspects and emphasize practical implementation.What you will learn Set up the development environment for OpenAI GPT. Understand and choose the right GPT model for your needs. Implement advanced prompt engineering techniques. Explore embedding and advanced embedding examples. Utilize OpenAI's Whisper for speech recognition and translation. Integrate OpenAI TTS models for text-to-speech applications. Who this book is for This book is designed for readers at an intermediate to advanced level who have a basic understanding of machine learning concepts and are eager to expand their expertise in AI with a focus on OpenAI's technologies. Ideal for those involved in AI-driven projects, the book assumes familiarity with Python programming and a fundamental grasp of AI principles. It’s especially beneficial for developers aiming to integrate GPT models into applications, AI researchers, and technical professionals involved in AI product development.


S 12: Killer Computer

S 12: Killer Computer

Author: M. T. Coffin

Publisher: HarperCollins

Published: 1996-08-01

Total Pages: 140

ISBN-13: 9780380783120

DOWNLOAD EBOOK

When her computer is infected by Zippy the virus, who promptly takes over her entire house, young Jenny is shocked when the unplugged Zippy survives and demands that she become his round-the-clock companion. Original.


Exploring GPT-3

Exploring GPT-3

Author: Steve Tingiris

Publisher: Packt Publishing Ltd

Published: 2021-08-27

Total Pages: 296

ISBN-13: 1800565496

DOWNLOAD EBOOK

Get started with GPT-3 and the OpenAI API for natural language processing using JavaScript and Python Key FeaturesUnderstand the power of potential GPT-3 language models and the risks involvedExplore core GPT-3 use cases such as text generation, classification, and semantic search using engaging examplesPlan and prepare a GPT-3 application for the OpenAI review process required for publishing a live applicationBook Description Generative Pre-trained Transformer 3 (GPT-3) is a highly advanced language model from OpenAI that can generate written text that is virtually indistinguishable from text written by humans. Whether you have a technical or non-technical background, this book will help you understand and start working with GPT-3 and the OpenAI API. If you want to get hands-on with leveraging artificial intelligence for natural language processing (NLP) tasks, this easy-to-follow book will help you get started. Beginning with a high-level introduction to NLP and GPT-3, the book takes you through practical examples that show how to leverage the OpenAI API and GPT-3 for text generation, classification, and semantic search. You'll explore the capabilities of the OpenAI API and GPT-3 and find out which NLP use cases GPT-3 is best suited for. You'll also learn how to use the API and optimize requests for the best possible results. With examples focusing on the OpenAI Playground and easy-to-follow JavaScript and Python code samples, the book illustrates the possible applications of GPT-3 in production. By the end of this book, you'll understand the best use cases for GPT-3 and how to integrate the OpenAI API in your applications for a wide array of NLP tasks. What you will learnUnderstand what GPT-3 is and how it can be used for various NLP tasksGet a high-level introduction to GPT-3 and the OpenAI APIImplement JavaScript and Python code examples that call the OpenAI APIStructure GPT-3 prompts and options to get the best possible resultsSelect the right GPT-3 engine or model to optimize for speed and cost-efficiencyFind out which use cases would not be suitable for GPT-3Create a GPT-3-powered knowledge base application that follows OpenAI guidelinesWho this book is for Exploring GPT-3 is for anyone interested in natural language processing or learning GPT-3 with or without a technical background. Developers, product managers, entrepreneurs, and hobbyists looking to get to grips with NLP, AI, and GPT-3 will find this book useful. Basic computer skills are all you need to get the most out of this book.


Building Enterprise JavaScript Applications

Building Enterprise JavaScript Applications

Author: Daniel Li

Publisher: Packt Publishing Ltd

Published: 2018-09-29

Total Pages: 752

ISBN-13: 1788472918

DOWNLOAD EBOOK

Strengthen your applications by adopting Test-Driven Development (TDD), the OpenAPI Specification, Continuous Integration (CI), and container orchestration. Key FeaturesCreate production-grade JavaScript applications from scratchBuild microservices and deploy them to a Docker container for scaling applicationsTest and deploy your code with confidence using Travis CIBook Description With the over-abundance of tools in the JavaScript ecosystem, it's easy to feel lost. Build tools, package managers, loaders, bundlers, linters, compilers, transpilers, typecheckers - how do you make sense of it all? In this book, we will build a simple API and React application from scratch. We begin by setting up our development environment using Git, yarn, Babel, and ESLint. Then, we will use Express, Elasticsearch and JSON Web Tokens (JWTs) to build a stateless API service. For the front-end, we will use React, Redux, and Webpack. A central theme in the book is maintaining code quality. As such, we will enforce a Test-Driven Development (TDD) process using Selenium, Cucumber, Mocha, Sinon, and Istanbul. As we progress through the book, the focus will shift towards automation and infrastructure. You will learn to work with Continuous Integration (CI) servers like Jenkins, deploying services inside Docker containers, and run them on Kubernetes. By following this book, you would gain the skills needed to build robust, production-ready applications. What you will learnPractice Test-Driven Development (TDD) throughout the entire bookUse Cucumber, Mocha and Selenium to write E2E, integration, unit and UI testsBuild stateless APIs using Express and ElasticsearchDocument your API using OpenAPI and SwaggerBuild and bundle front-end applications using React, Redux and WebpackContainerize services using DockerDeploying scalable microservices using KubernetesWho this book is for If you're a JavaScript developer looking to expand your skillset and become a senior JavaScript developer by building production-ready web applications, then this book is for you.


Moving to the Linux Business Desktop

Moving to the Linux Business Desktop

Author: Marcel Gagné

Publisher: Addison-Wesley Professional

Published: 2005

Total Pages: 702

ISBN-13:

DOWNLOAD EBOOK

2004 is the year of the Linux business desktop! Award-winning author shows how to design, deploy, and maintain a network of Linux desktops.


Pro ASP.NET Web API Security

Pro ASP.NET Web API Security

Author: Badrinarayanan Lakshmiraghavan

Publisher: Apress

Published: 2013-05-13

Total Pages: 402

ISBN-13: 1430257830

DOWNLOAD EBOOK

ASP.NET Web API is a key part of ASP.NET MVC 4 and the platform of choice for building RESTful services that can be accessed by a wide range of devices. Everything from JavaScript libraries to RIA plugins, RFID readers to smart phones can consume your services using platform-agnostic HTTP. With such wide accessibility, securing your code effectively needs to be a top priority. You will quickly find that the WCF security protocols you’re familiar with from .NET are less suitable than they once were in this new environment, proving themselves cumbersome and limited in terms of the standards they can work with. Fortunately, ASP.NET Web API provides a simple, robust security solution of its own that fits neatly within the ASP.NET MVC programming model and secures your code without the need for SOAP, meaning that there is no limit to the range of devices that it can work with – if it can understand HTTP, then it can be secured by Web API. These SOAP-less security techniques are the focus of this book.


Pro Java 6 3D Game Development

Pro Java 6 3D Game Development

Author: Andrew Davison

Publisher: Apress

Published: 2008-01-01

Total Pages: 508

ISBN-13: 1430202122

DOWNLOAD EBOOK

This book looks at the two most popular ways of using Java SE 6 to write 3D games on PCs: Java 3D (a high-level scene graph API) and JOGL (a Java layer over OpenGL). Written by Java gaming expert, Andrew Davison, this book uses the new Java (SE) 6 platform and its features including splash screens, scripting, and the desktop tray interface. This book is also unique in that it covers Java game development using the Java 3D API and Java for OpenGL--both critical components and libraries for Java-based 3D game application development


Advanced Deep Learning with Python

Advanced Deep Learning with Python

Author: Ivan Vasilev

Publisher: Packt Publishing Ltd

Published: 2019-12-12

Total Pages: 456

ISBN-13: 1789952719

DOWNLOAD EBOOK

Gain expertise in advanced deep learning domains such as neural networks, meta-learning, graph neural networks, and memory augmented neural networks using the Python ecosystem Key FeaturesGet to grips with building faster and more robust deep learning architecturesInvestigate and train convolutional neural network (CNN) models with GPU-accelerated libraries such as TensorFlow and PyTorchApply deep neural networks (DNNs) to computer vision problems, NLP, and GANsBook Description In order to build robust deep learning systems, you’ll need to understand everything from how neural networks work to training CNN models. In this book, you’ll discover newly developed deep learning models, methodologies used in the domain, and their implementation based on areas of application. You’ll start by understanding the building blocks and the math behind neural networks, and then move on to CNNs and their advanced applications in computer vision. You'll also learn to apply the most popular CNN architectures in object detection and image segmentation. Further on, you’ll focus on variational autoencoders and GANs. You’ll then use neural networks to extract sophisticated vector representations of words, before going on to cover various types of recurrent networks, such as LSTM and GRU. You’ll even explore the attention mechanism to process sequential data without the help of recurrent neural networks (RNNs). Later, you’ll use graph neural networks for processing structured data, along with covering meta-learning, which allows you to train neural networks with fewer training samples. Finally, you’ll understand how to apply deep learning to autonomous vehicles. By the end of this book, you’ll have mastered key deep learning concepts and the different applications of deep learning models in the real world. What you will learnCover advanced and state-of-the-art neural network architecturesUnderstand the theory and math behind neural networksTrain DNNs and apply them to modern deep learning problemsUse CNNs for object detection and image segmentationImplement generative adversarial networks (GANs) and variational autoencoders to generate new imagesSolve natural language processing (NLP) tasks, such as machine translation, using sequence-to-sequence modelsUnderstand DL techniques, such as meta-learning and graph neural networksWho this book is for This book is for data scientists, deep learning engineers and researchers, and AI developers who want to further their knowledge of deep learning and build innovative and unique deep learning projects. Anyone looking to get to grips with advanced use cases and methodologies adopted in the deep learning domain using real-world examples will also find this book useful. Basic understanding of deep learning concepts and working knowledge of the Python programming language is assumed.


Data Science from Scratch

Data Science from Scratch

Author: Joel Grus

Publisher: "O'Reilly Media, Inc."

Published: 2015-04-14

Total Pages: 336

ISBN-13: 1491904399

DOWNLOAD EBOOK

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases