This comprehensive handbook serves as a professional reference as well as a practitioner's guide to today's most complete and concise view of nanoscale networking and communications. It offers in-depth coverage of theory, technology, and practice as they relate to established technologies and recent advancements. It explores practical solutions to a wide range of nanoscale networking and communications issues. Individual chapters, authored by leading experts in the field, address the immediate and long-term challenges in the authors' respective areas of expertise.
Nanotechnology: From Its Origin to Present and Future Applications offers a comprehensive and detailed exploration of nanotechnology, tracing its journey from early theoretical foundations to its current and potential future applications. Written by telecommunications and technology expert Ron Legarski, this book delves into the vast possibilities nanotechnology holds across various industries, including healthcare, energy, electronics, artificial intelligence, and telecommunications. With the convergence of nanotechnology, AI, and machine learning driving innovation, this book provides readers with a deep understanding of the science behind nanoscale structures and their real-world applications. Legarski combines his expertise with practical examples and case studies to demonstrate how nanotechnology is revolutionizing industries such as medicine, renewable energy, and advanced manufacturing. Key topics covered include: The historical development and theoretical foundations of nanotechnology Breakthroughs in nanomedicine, drug delivery systems, and diagnostics Applications of nanotechnology in AI, machine learning, and quantum computing The role of nanotechnology in creating sustainable energy solutions Ethical, environmental, and regulatory considerations in the development of nanomaterials Future prospects and trends in nanotechnology innovation Perfect for professionals, students, and enthusiasts alike, Nanotechnology: From Its Origin to Present and Future Applications provides an insightful, forward-looking guide to one of the most transformative technologies of the modern era. Whether you are new to the subject or seeking a deeper understanding, this book offers valuable perspectives on the future of science, technology, and industry.
Going beyond isolated research ideas and design experiences, Designing Network On-Chip Architectures in the Nanoscale Era covers the foundations and design methods of network on-chip (NoC) technology. The contributors draw on their own lessons learned to provide strong practical guidance on various design issues.Exploring the design process of the
This up-to-date reference is the most comprehensive summary of the field of nanoscience and its applications. It begins with fundamental properties at the nanoscale and then goes well beyond into the practical aspects of the design, synthesis, and use of nanomaterials in various industries. It emphasizes the vast strides made in the field over the past decade – the chapters focus on new, promising directions as well as emerging theoretical and experimental methods. The contents incorporate experimental data and graphs where appropriate, as well as supporting tables and figures with a tutorial approach.
This book presents high-quality papers from the Fifth International Conference on Microelectronics, Computing & Communication Systems (MCCS 2020). It discusses the latest technological trends and advances in MEMS and nanoelectronics, wireless communication, optical communication, instrumentation, signal processing, image processing, bioengineering, green energy, hybrid vehicles, environmental science, weather forecasting, cloud computing, renewable energy, RFID, CMOS sensors, actuators, transducers, telemetry systems, embedded systems and sensor network applications. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements and testing. The applications and solutions discussed here provide excellent reference material for future product development.
Circuits for Emerging Technologies Beyond CMOS New exciting opportunities are abounding in the field of body area networks, wireless communications, data networking, and optical imaging. In response to these developments, top-notch international experts in industry and academia present Circuits at the Nanoscale: Communications, Imaging, and Sensing. This volume, unique in both its scope and its focus, addresses the state-of-the-art in integrated circuit design in the context of emerging systems. A must for anyone serious about circuit design for future technologies, this book discusses emerging materials that can take system performance beyond standard CMOS. These include Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP). Three-dimensional CMOS integration and co-integration with Microelectromechanical (MEMS) technology and radiation sensors are described as well. Topics in the book are divided into comprehensive sections on emerging design techniques, mixed-signal CMOS circuits, circuits for communications, and circuits for imaging and sensing. Dr. Krzysztof Iniewski is a director at CMOS Emerging Technologies, Inc., a consulting company in Vancouver, British Columbia. His current research interests are in VLSI ciruits for medical applications. He has published over 100 research papers in international journals and conferences, and he holds 18 international patents granted in the United States, Canada, France, Germany, and Japan. In this volume, he has assembled the contributions of over 60 world-reknown experts who are at the top of their field in the world of circuit design, advancing the bank of knowledge for all who work in this exciting and burgeoning area.
This book fills a gap in the existing literature by combining a plethora of WSN-based emerging technologies into a single source so that reviewers can form opinions regarding these technologies. It presents different types of emerging communication technologies based on WSNs and describes how wireless sensor networks can be integrated with other communication technologies. It covers many of the new techniques and demonstrates the application of WSNs. The book is composed of 14 chapters, divided into four parts.
The 3rd International Conference on Foundations and Frontiers in Computer, Communication and Electrical Engineering is a notable event which brings together academia, researchers, engineers and students in the fields of Electronics and Communication, Computer and Electrical Engineering making the conference a perfect platform to share experience, f
Comprehensive reference on the fundamental principles and basic physics dictating metal–oxide–semiconductor field-effect transistor (MOSFET) operation Advanced Nanoscale MOSFET Architectures provides an in-depth review of modern metal–oxide–semiconductor field-effect transistor (MOSFET) device technologies and advancements, with information on their operation, various architectures, fabrication, materials, modeling and simulation methods, circuit applications, and other aspects related to nanoscale MOSFET technology. The text begins with an introduction to the foundational technology before moving on to describe challenges associated with the scaling of nanoscale devices. Other topics covered include device physics and operation, strain engineering for highly scaled MOSFETs, tunnel FET, graphene based field effect transistors, and more. The text also compares silicon bulk and devices, nanosheet transistors and introduces low-power circuit design using advanced MOSFETs. Additional topics covered include: High-k gate dielectrics and metal gate electrodes for multi-gate MOSFETs, covering gate stack processing and metal gate modification Strain engineering in 3D complementary metal-oxide semiconductors (CMOS) and its scaling impact, and strain engineering in silicon–germanium (SiGe) FinFET and its challenges and future perspectives TCAD simulation of multi-gate MOSFET, covering model calibration and device performance for analog and RF applications Description of the design of an analog amplifier circuit using digital CMOS technology of SCL for ultra-low power VLSI applications Advanced Nanoscale MOSFET Architectures helps readers understand device physics and design of new structures and material compositions, making it an important resource for the researchers and professionals who are carrying out research in the field, along with students in related programs of study.