Graph Structure Theory

Graph Structure Theory

Author: Neil Robertson

Publisher: American Mathematical Soc.

Published: 1993-06-14

Total Pages: 706

ISBN-13: 0821851608

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, held at the University of Washington in Seattle in the summer of 1991. Among the topics covered are: algorithms on tree-structured graphs, well-quasi-ordering, logic, infinite graphs, disjoint path problems, surface embeddings, knot theory, graph polynomials, matroid theory, and combinatorial optimization.


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports

Author:

Publisher:

Published: 1978

Total Pages: 762

ISBN-13:

DOWNLOAD EBOOK

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Thirty-three Miniatures

Thirty-three Miniatures

Author: Jiří Matoušek

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 196

ISBN-13: 0821849778

DOWNLOAD EBOOK

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)


Divisors and Sandpiles

Divisors and Sandpiles

Author: Scott Corry

Publisher: American Mathematical Soc.

Published: 2018-07-23

Total Pages: 342

ISBN-13: 1470442183

DOWNLOAD EBOOK

Divisors and Sandpiles provides an introduction to the combinatorial theory of chip-firing on finite graphs. Part 1 motivates the study of the discrete Laplacian by introducing the dollar game. The resulting theory of divisors on graphs runs in close parallel to the geometric theory of divisors on Riemann surfaces, and Part 1 culminates in a full exposition of the graph-theoretic Riemann-Roch theorem due to M. Baker and S. Norine. The text leverages the reader's understanding of the discrete story to provide a brief overview of the classical theory of Riemann surfaces. Part 2 focuses on sandpiles, which are toy models of physical systems with dynamics controlled by the discrete Laplacian of the underlying graph. The text provides a careful introduction to the sandpile group and the abelian sandpile model, leading ultimately to L. Levine's threshold density theorem for the fixed-energy sandpile Markov chain. In a precise sense, the theory of sandpiles is dual to the theory of divisors, and there are many beautiful connections between the first two parts of the book. Part 3 addresses various topics connecting the theory of chip-firing to other areas of mathematics, including the matrix-tree theorem, harmonic morphisms, parking functions, M-matrices, matroids, the Tutte polynomial, and simplicial homology. The text is suitable for advanced undergraduates and beginning graduate students.


Graph Connections

Graph Connections

Author: Lowell W. Beineke

Publisher:

Published: 1997

Total Pages: 312

ISBN-13:

DOWNLOAD EBOOK

This new book introduces mathematicians to the applicability of graph theory to other areas, from number theory to linear algebra, neural networks, and finance. This is achieved through a series of expository chapters, each written by an expert in a different field. Each chapter has been carefully edited so that the terminology and notation are as standardized as possible. The book will be useful to both graph theorists and practitioners in other areas.


Probability on Graphs

Probability on Graphs

Author: Geoffrey Grimmett

Publisher: Cambridge University Press

Published: 2018-01-25

Total Pages: 279

ISBN-13: 1108542999

DOWNLOAD EBOOK

This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.


Integer Programming and Combinatorial Optimization

Integer Programming and Combinatorial Optimization

Author: Karen Aardal

Publisher: Springer Nature

Published: 2022-05-27

Total Pages: 469

ISBN-13: 3031069013

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 23rd International Conference on Integer Programming and Combinatorial Optimization, IPCO 2022, held in Eindhoven, The Netherlands, in June 2022. The 33 full papers presented were carefully reviewed and selected from 93 submissions addressing key techniques of document analysis. IPCO is under the auspices of the Mathematical Optimization Society, and it is an important forum for presenting the latest results of theory and practice of the various aspects of discrete optimization.