On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173)

On the Cohomology of Certain Non-Compact Shimura Varieties (AM-173)

Author: Sophie Morel

Publisher: Princeton University Press

Published: 2010-01-04

Total Pages: 231

ISBN-13: 1400835399

DOWNLOAD EBOOK

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.


The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)

The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)

Author: Michael Harris

Publisher: Princeton University Press

Published: 2001-11-04

Total Pages: 287

ISBN-13: 0691090920

DOWNLOAD EBOOK

This book aims first to prove the local Langlands conjecture for GLn over a p-adic field and, second, to identify the action of the decomposition group at a prime of bad reduction on the l-adic cohomology of the "simple" Shimura varieties. These two problems go hand in hand. The results represent a major advance in algebraic number theory, finally proving the conjecture first proposed in Langlands's 1969 Washington lecture as a non-abelian generalization of local class field theory. The local Langlands conjecture for GLn(K), where K is a p-adic field, asserts the existence of a correspondence, with certain formal properties, relating n-dimensional representations of the Galois group of K with the representation theory of the locally compact group GLn(K). This book constructs a candidate for such a local Langlands correspondence on the vanishing cycles attached to the bad reduction over the integer ring of K of a certain family of Shimura varieties. And it proves that this is roughly compatible with the global Galois correspondence realized on the cohomology of the same Shimura varieties. The local Langlands conjecture is obtained as a corollary. Certain techniques developed in this book should extend to more general Shimura varieties, providing new instances of the local Langlands conjecture. Moreover, the geometry of the special fibers is strictly analogous to that of Shimura curves and can be expected to have applications to a variety of questions in number theory.


Shimura Varieties

Shimura Varieties

Author: Thomas Haines

Publisher: Cambridge University Press

Published: 2020-02-20

Total Pages: 341

ISBN-13: 1108704867

DOWNLOAD EBOOK

This volume forms the sequel to "On the stabilization of the trace formula", published by International Press of Boston, Inc., 2011


Author:

Publisher: World Scientific

Published:

Total Pages: 1191

ISBN-13:

DOWNLOAD EBOOK


Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Proceedings Of The International Congress Of Mathematicians 2010 (Icm 2010) (In 4 Volumes) - Vol. I: Plenary Lectures And Ceremonies, Vols. Ii-iv: Invited Lectures

Author: Rajendra Bhatia

Publisher: World Scientific

Published: 2011-06-06

Total Pages: 4137

ISBN-13: 9814462934

DOWNLOAD EBOOK

ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.


Automorphic Forms and Galois Representations

Automorphic Forms and Galois Representations

Author: Fred Diamond

Publisher: Cambridge University Press

Published: 2014-10-16

Total Pages: 387

ISBN-13: 1107693632

DOWNLOAD EBOOK

Part two of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.


Relative Trace Formulas

Relative Trace Formulas

Author: Werner Müller

Publisher: Springer Nature

Published: 2021-05-18

Total Pages: 438

ISBN-13: 3030685063

DOWNLOAD EBOOK

A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur’s trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches.


Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 708

ISBN-13: 9780821838440

DOWNLOAD EBOOK

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.


On the Cohomology of Certain Non-Compact Shimura Varieties

On the Cohomology of Certain Non-Compact Shimura Varieties

Author: Sophie Morel

Publisher: Princeton University Press

Published: 2010-01-24

Total Pages: 234

ISBN-13: 9780691142937

DOWNLOAD EBOOK

This book studies the intersection cohomology of the Shimura varieties associated to unitary groups of any rank over Q. In general, these varieties are not compact. The intersection cohomology of the Shimura variety associated to a reductive group G carries commuting actions of the absolute Galois group of the reflex field and of the group G(Af) of finite adelic points of G. The second action can be studied on the set of complex points of the Shimura variety. In this book, Sophie Morel identifies the Galois action--at good places--on the G(Af)-isotypical components of the cohomology. Morel uses the method developed by Langlands, Ihara, and Kottwitz, which is to compare the Grothendieck-Lefschetz fixed point formula and the Arthur-Selberg trace formula. The first problem, that of applying the fixed point formula to the intersection cohomology, is geometric in nature and is the object of the first chapter, which builds on Morel's previous work. She then turns to the group-theoretical problem of comparing these results with the trace formula, when G is a unitary group over Q. Applications are then given. In particular, the Galois representation on a G(Af)-isotypical component of the cohomology is identified at almost all places, modulo a non-explicit multiplicity. Morel also gives some results on base change from unitary groups to general linear groups.