On Some Applications of Diophantine Approximations

On Some Applications of Diophantine Approximations

Author: Umberto Zannier

Publisher: Springer

Published: 2015-02-13

Total Pages: 169

ISBN-13: 8876425209

DOWNLOAD EBOOK

This book consists mainly of the translation, by C. Fuchs, of the 1929 landmark paper "Über einige Anwendungen diophantischer Approximationen" by C.L. Siegel. The paper contains proofs of most important results in transcendence theory and diophantine analysis, notably Siegel’s celebrated theorem on integral points on algebraic curves. Many modern versions of Siegel’s proof have appeared, but none seem to faithfully reproduce all features of the original one. This translation makes Siegel’s original ideas and proofs available for the first time in English. The volume also contains the original version of the paper (in German) and an article by the translator and U. Zannier, commenting on some aspects of the evolution of this field following Siegel’s paper. To end, it presents three modern proofs of Siegel’s theorem on integral points.


Diophantine Approximations and Diophantine Equations

Diophantine Approximations and Diophantine Equations

Author: Wolfgang M. Schmidt

Publisher: Springer

Published: 2006-12-08

Total Pages: 224

ISBN-13: 3540473742

DOWNLOAD EBOOK

"This book by a leading researcher and masterly expositor of the subject studies diophantine approximations to algebraic numbers and their applications to diophantine equations. The methods are classical, and the results stressed can be obtained without much background in algebraic geometry. In particular, Thue equations, norm form equations and S-unit equations, with emphasis on recent explicit bounds on the number of solutions, are included. The book will be useful for graduate students and researchers." (L'Enseignement Mathematique) "The rich Bibliography includes more than hundred references. The book is easy to read, it may be a useful piece of reading not only for experts but for students as well." Acta Scientiarum Mathematicarum


Diophantine Approximation on Linear Algebraic Groups

Diophantine Approximation on Linear Algebraic Groups

Author: Michel Waldschmidt

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 649

ISBN-13: 3662115697

DOWNLOAD EBOOK

The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. Two chapters provide complete and simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.


Diophantine Approximation

Diophantine Approximation

Author: David Masser

Publisher: Springer

Published: 2008-02-01

Total Pages: 359

ISBN-13: 3540449795

DOWNLOAD EBOOK

Diophantine Approximation is a branch of Number Theory having its origins intheproblemofproducing“best”rationalapproximationstogivenrealn- bers. Since the early work of Lagrange on Pell’s equation and the pioneering work of Thue on the rational approximations to algebraic numbers of degree ? 3, it has been clear how, in addition to its own speci?c importance and - terest, the theory can have fundamental applications to classical diophantine problems in Number Theory. During the whole 20th century, until very recent times, this fruitful interplay went much further, also involving Transcend- tal Number Theory and leading to the solution of several central conjectures on diophantine equations and class number, and to other important achie- ments. These developments naturally raised further intensive research, so at the moment the subject is a most lively one. This motivated our proposal for a C. I. M. E. session, with the aim to make it available to a public wider than specialists an overview of the subject, with special emphasis on modern advances and techniques. Our project was kindly supported by the C. I. M. E. Committee and met with the interest of a largenumberofapplicants;forty-twoparticipantsfromseveralcountries,both graduatestudentsandseniormathematicians,intensivelyfollowedcoursesand seminars in a friendly and co-operative atmosphere. The main part of the session was arranged in four six-hours courses by Professors D. Masser (Basel), H. P. Schlickewei (Marburg), W. M. Schmidt (Boulder) and M. Waldschmidt (Paris VI). This volume contains expanded notes by the authors of the four courses, together with a paper by Professor Yu. V.


Diophantine Approximation and Abelian Varieties

Diophantine Approximation and Abelian Varieties

Author: Bas Edixhoven

Publisher: Springer Science & Business Media

Published: 1993

Total Pages: 136

ISBN-13: 3540575286

DOWNLOAD EBOOK

The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.


Diophantine Analysis

Diophantine Analysis

Author: Jorn Steuding

Publisher: CRC Press

Published: 2005-05-19

Total Pages: 271

ISBN-13: 1420057200

DOWNLOAD EBOOK

While its roots reach back to the third century, diophantine analysis continues to be an extremely active and powerful area of number theory. Many diophantine problems have simple formulations, they can be extremely difficult to attack, and many open problems and conjectures remain. Diophantine Analysis examines the theory of diophantine ap


Algorithms in Algebraic Geometry and Applications

Algorithms in Algebraic Geometry and Applications

Author: Laureano Gonzalez-Vega

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 407

ISBN-13: 3034891040

DOWNLOAD EBOOK

The present volume contains a selection of refereed papers from the MEGA-94 symposium held in Santander, Spain, in April 1994. They cover recent developments in the theory and practice of computation in algebraic geometry and present new applications in science and engineering, particularly computer vision and theory of robotics. The volume will be of interest to researchers working in the areas of computer algebra and symbolic computation as well as to mathematicians and computer scientists interested in gaining access to these topics.


Diophantine Geometry

Diophantine Geometry

Author: Marc Hindry

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 574

ISBN-13: 1461212103

DOWNLOAD EBOOK

This is an introduction to diophantine geometry at the advanced graduate level. The book contains a proof of the Mordell conjecture which will make it quite attractive to graduate students and professional mathematicians. In each part of the book, the reader will find numerous exercises.


Diophantine Approximation and Abelian Varieties

Diophantine Approximation and Abelian Varieties

Author: Bas Edixhoven

Publisher: Springer

Published: 2009-02-05

Total Pages: 136

ISBN-13: 3540482083

DOWNLOAD EBOOK

The 13 chapters of this book centre around the proof of Theorem 1 of Faltings' paper "Diophantine approximation on abelian varieties", Ann. Math.133 (1991) and together give an approach to the proof that is accessible to Ph.D-level students in number theory and algebraic geometry. Each chapter is based on an instructional lecture given by its author ata special conference for graduate students, on the topic of Faltings' paper.