Coding and Signal Processing for Magnetic Recording Systems

Coding and Signal Processing for Magnetic Recording Systems

Author: Bane Vasic

Publisher: CRC Press

Published: 2004-11-09

Total Pages: 742

ISBN-13: 0203490312

DOWNLOAD EBOOK

Implementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.


Coding and Iterative Detection for Magnetic Recording Channels

Coding and Iterative Detection for Magnetic Recording Channels

Author: Zining Wu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 165

ISBN-13: 146154565X

DOWNLOAD EBOOK

The advent of the internet age has produced enormous demand for in creased storage capacity and for the consequent increases in the amount of information that can be stored in a small space. While physical and media improvements have driven the majority of improvement in modern storage systems, signal processing and coding methods have increasing ly been used to augment those improvements. Run-length-limited codes and partial-response detection methods have come to be the norm in an industry that once rejected any sophistication in the read or write pro cessing circuits. VLSI advances now enable increasingly sophisticated signal processing methods for negligible cost and complexity, a trend sure to continue even as disk access speeds progress to billions of bits per second and terabits per square inch in the new millennium of the in formation age. This new book representing the Ph. D. dissertation work of Stanford's recent graduate Dr. Zining Wu is an up-to-date and fo cused review of the area that should be of value to those just starting in this area and as well those with considerable expertise. The use of saturation recording, i. e. the mandated restriction of two-level inputs, creates interesting twists on the use of communica tion/transmission methods in recording.


Constrained Coding and Signal Processing for Data Storage Systems

Constrained Coding and Signal Processing for Data Storage Systems

Author: Sharon Aviran

Publisher:

Published: 2006

Total Pages: 136

ISBN-13:

DOWNLOAD EBOOK

Constrained codes for digital storage systems are studied. A method for improving signal detection in digital magnetic recording systems is also investigated. The bit stuffing algorithm is a technique for coding constrained sequences by the insertion of bits into an arbitrary data sequence. This approach was previously introduced and applied to the family of $(d, k)$ constraints. Results show that the maximum average rate of the bit stuffing code achieves the Shannon capacity when $k=d+1$ or $k=\infty$, and fails to achieve capacity for all other $(d, k)$ pairs. A modification to the bit stuffing algorithm is proposed that is based on the addition of controlled bit flipping. It is shown that the modified scheme achieves improved average rates over bit stuffing for most $(d, k)$ constraints. All $(d, k)$ constraints for which this scheme produces codes with an average rate equal to the Shannon capacity are determined. A general framework for the construction of $(d, k)$-constrained codes from variable-length source codes is presented. Optimal variable-length codes under the general framework are investigated. The construction of constrained codes from variable-length source codes for encoding unconstrained sequences of independent but biased (as opposed to equiprobable) bits is also considered. It is shown that one can use the Tunstall source coding algorithm to generate optimal codes for a partial class of $(d, k)$ constraints. Bit-stuffing schemes which encode arbitrary inputs into two-dimensional (2-D) constrained arrays are presented. The class of 2-D $(d, \infty)$ constraints as well as the `no isolated bits' constraint are considered. The proposed schemes are based on interleaving biased bits with multiple biases into a 2-D array, while stuffing extra bits when necessary. The performance of the suggested schemes is studied through simulations. A method for joint detection and decoding of coded transmission over magnetic recording channels is considered. The standard framework of turbo equalization is modified to account for the colored noise present in high-density magnetic recording systems. The modified scheme incorporates a noise prediction algorithm, which iteratively and selectively whitens the noise, while utilizing the information produced by the turbo equalization scheme. Simulation results demonstrate the performance improvements obtained by the proposed scheme.


Detection and Decoding for Magnetic Storage Systems

Detection and Decoding for Magnetic Storage Systems

Author:

Publisher:

Published: 2009

Total Pages: 344

ISBN-13:

DOWNLOAD EBOOK

The hard-disk storage industry is at a critical time as the current technologies are incapable of achieving densities beyond 500 Gb/in2, which will be reached in a few years. Many radically new storage architectures have been proposed, which along with advanced signal processing algorithms are expected to achieve much higher densities. In this dissertation, various signal processing algorithms are developed to improve the performance of current and next-generation magnetic storage systems. Low-density parity-check (LDPC) error correction codes are known to provide excellent performance in magnetic storage systems and are likely to replace or supplement currently used algebraic codes. Two methods are described to improve their performance in such systems. In the first method, the detector is modified to incorporate auxiliary LDPC parity checks. Using graph theoretical algorithms, a method to incorporate maximum number of such checks for a given complexity is provided. In the second method, a joint detection and decoding algorithm is developed that, unlike all other schemes, operates on the non-binary channel output symbols rather than input bits. Though sub-optimal, it is shown to provide the best known decoding performance for channels with memory more than 1, which are practically the most important. This dissertation also proposes a ternary magnetic recording system from a signal processing perspective. The advantage of this novel scheme is that it is capable of making magnetic transitions with two different but predetermined gradients. By developing optimal signal processing components like receivers, equalizers and detectors for this channel, the equivalence of this system to a two-track/two-head system is determined and its performance is analyzed. Consequently, it is shown that it is preferable to store information using this system, than to store using a binary system with inter-track interference. Finally, this dissertation provides a number of insights into the unique characteristics of heat-assisted magnetic recording (HAMR) and two-dimensional magnetic recording (TDMR) channels. For HAMR channels, the effects of laser spot on transition characteristics and non-linear transition shift are investigated. For TDMR channels, a suitable channel model is developed to investigate the two-dimensional nature of the noise.


Magnetic Storage Systems Beyond 2000

Magnetic Storage Systems Beyond 2000

Author: G.C. Hadjipanayis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 610

ISBN-13: 9401006245

DOWNLOAD EBOOK

An up-to-date and comprehensive review of magnetic storage systems, including particulate and rigid media, magnetic heads, tribology, signal processing spintronics, and other, future systems. A thorough theoretical discussion supplements the experimental and technical aspects. Each section commences with a tutorial paper, which is followed by technical discussions of current research in the area. Written at a level suitable for advanced graduate students.