Handbook of Set-Theoretic Topology

Handbook of Set-Theoretic Topology

Author: K. Kunen

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 1282

ISBN-13: 148329515X

DOWNLOAD EBOOK

This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.


Problems and Theorems in Classical Set Theory

Problems and Theorems in Classical Set Theory

Author: Peter Komjath

Publisher: Springer Science & Business Media

Published: 2006-11-22

Total Pages: 492

ISBN-13: 0387362193

DOWNLOAD EBOOK

This volume contains a variety of problems from classical set theory and represents the first comprehensive collection of such problems. Many of these problems are also related to other fields of mathematics, including algebra, combinatorics, topology and real analysis. Rather than using drill exercises, most problems are challenging and require work, wit, and inspiration. They vary in difficulty, and are organized in such a way that earlier problems help in the solution of later ones. For many of the problems, the authors also trace the history of the problems and then provide proper reference at the end of the solution.


Lectures on Set Theoretic Topology

Lectures on Set Theoretic Topology

Author: Mary Ellen Rudin

Publisher: American Mathematical Soc.

Published: 1975-12-31

Total Pages: 82

ISBN-13: 082181673X

DOWNLOAD EBOOK

This survey presents some recent results connecting set theory with the problems of general topology, primarily giving the applications of classical set theory in general topology and not considering problems involving large numbers. The lectures are completely self-contained--this is a good reference book on modern questions of general topology and can serve as an introduction to the applications of set theory and infinite combinatorics.


Introduction to Set Theory and Topology

Introduction to Set Theory and Topology

Author: Kazimierz Kuratowski

Publisher: Elsevier

Published: 2014-07-10

Total Pages: 353

ISBN-13: 1483151638

DOWNLOAD EBOOK

Introduction to Set Theory and Topology describes the fundamental concepts of set theory and topology as well as its applicability to analysis, geometry, and other branches of mathematics, including algebra and probability theory. Concepts such as inverse limit, lattice, ideal, filter, commutative diagram, quotient-spaces, completely regular spaces, quasicomponents, and cartesian products of topological spaces are considered. This volume consists of 21 chapters organized into two sections and begins with an introduction to set theory, with emphasis on the propositional calculus and its application to propositions each having one of two logical values, 0 and 1. Operations on sets which are analogous to arithmetic operations are also discussed. The chapters that follow focus on the mapping concept, the power of a set, operations on cardinal numbers, order relations, and well ordering. The section on topology explores metric and topological spaces, continuous mappings, cartesian products, and other spaces such as spaces with a countable base, complete spaces, compact spaces, and connected spaces. The concept of dimension, simplexes and their properties, and cuttings of the plane are also analyzed. This book is intended for students and teachers of mathematics.


A Cp-Theory Problem Book

A Cp-Theory Problem Book

Author: Vladimir V. Tkachuk

Publisher: Springer Science & Business Media

Published: 2011-03-23

Total Pages: 497

ISBN-13: 1441974423

DOWNLOAD EBOOK

The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.


Open Problems in Topology II

Open Problems in Topology II

Author: Elliott M. Pearl

Publisher: Elsevier

Published: 2011-08-11

Total Pages: 777

ISBN-13: 0080475299

DOWNLOAD EBOOK

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis.* New surveys of research problems in topology* New perspectives on classic problems* Representative surveys of research groups from all around the world


Topology

Topology

Author: Tai-Danae Bradley

Publisher: MIT Press

Published: 2020-08-18

Total Pages: 167

ISBN-13: 0262359626

DOWNLOAD EBOOK

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.


Elementary Topology

Elementary Topology

Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov

Publisher: American Mathematical Soc.

Published:

Total Pages: 432

ISBN-13: 9780821886250

DOWNLOAD EBOOK

This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.


Handbook of Set Theory

Handbook of Set Theory

Author: Matthew Foreman

Publisher: Springer Science & Business Media

Published: 2009-12-10

Total Pages: 2200

ISBN-13: 1402057644

DOWNLOAD EBOOK

Numbers imitate space, which is of such a di?erent nature —Blaise Pascal It is fair to date the study of the foundation of mathematics back to the ancient Greeks. The urge to understand and systematize the mathematics of the time led Euclid to postulate axioms in an early attempt to put geometry on a ?rm footing. With roots in the Elements, the distinctive methodology of mathematics has become proof. Inevitably two questions arise: What are proofs? and What assumptions are proofs based on? The ?rst question, traditionally an internal question of the ?eld of logic, was also wrestled with in antiquity. Aristotle gave his famous syllogistic s- tems, and the Stoics had a nascent propositional logic. This study continued with ?ts and starts, through Boethius, the Arabs and the medieval logicians in Paris and London. The early germs of logic emerged in the context of philosophy and theology. The development of analytic geometry, as exempli?ed by Descartes, ill- tratedoneofthedi?cultiesinherentinfoundingmathematics. Itisclassically phrased as the question ofhow one reconciles the arithmetic with the geom- ric. Arenumbers onetypeofthingand geometricobjectsanother? Whatare the relationships between these two types of objects? How can they interact? Discovery of new types of mathematical objects, such as imaginary numbers and, much later, formal objects such as free groups and formal power series make the problem of ?nding a common playing ?eld for all of mathematics importunate. Several pressures made foundational issues urgent in the 19th century.


Open Problems in Topology

Open Problems in Topology

Author: J. van Mill

Publisher: North Holland

Published: 1990

Total Pages: 716

ISBN-13:

DOWNLOAD EBOOK

From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.