This book provides a comprehensive overview of oil spill remediation from the perspectives of policy makers, scientists, and engineers, generally focusing on colloid chemistry phenomena and solutions involved in oil spills and their cleanup. • First book to address oil spill remediation from the perspective of physicochemical and colloidal science • Discusses current and emerging detergents used in clean-ups • Includes chapters from leading scientists, researchers, engineers, and policy makers • Presents new insights into the possible impact of oil spills on ecosystems as well as preventive measures
The Political Ecology of Oil and Gas Activities in the Nigerian Aquatic Ecosystem reviews the current status of the ecosystems and economic implications of oil and gas development in Nigeria, a key oil-producing state. The ecological and economic impacts of oil and gas development, particularly in developing nations, are crucial topics for ecologists, natural resource professionals and pollution researchers to understand. This book takes an integrative approach to these problems through the lens of one of the key oil-producing nations, linking natural and human systems through the valuation of ecosystem services. - Provides background information on Nigerian aquatic environments, its local history of oil exploration and a review of the physical chemistry of crude oil - Reviews global and national perspectives on the oil and gas industry from a physical ecological, to a socio-political and economic ecological perspective - Demonstrates real-life situations of the interactions and impacts of Nigerian petroleum production on the environment and local populations through case studies
Provides a scientific basis for the cleanup and for the assessment of oil spills Enables Non-scientific officers to understand the science they use on a daily basis Multi-disciplinary approach covering fields as diverse as biology, microbiology, chemistry, physics, oceanography and toxicology Covers the science of oil spills from risk analysis to cleanup and through the effects on the environment Includes case studies examining and analyzing spills, such as Tasman Spirit oil spill on the Karachi Coast, and provides lessons to prevent these in the future
U.S. Arctic waters north of the Bering Strait and west of the Canadian border encompass a vast area that is usually ice covered for much of the year, but is increasingly experiencing longer periods and larger areas of open water due to climate change. Sparsely inhabited with a wide variety of ecosystems found nowhere else, this region is vulnerable to damage from human activities. As oil and gas, shipping, and tourism activities increase, the possibilities of an oil spill also increase. How can we best prepare to respond to such an event in this challenging environment? Responding to Oil Spills in the U.S. Arctic Marine Environment reviews the current state of the science regarding oil spill response and environmental assessment in the Arctic region north of the Bering Strait, with emphasis on the potential impacts in U.S. waters. This report describes the unique ecosystems and environment of the Arctic and makes recommendations to provide an effective response effort in these challenging conditions. According to Responding to Oil Spills in the U.S. Arctic Marine Environment, a full range of proven oil spill response technologies is needed in order to minimize the impacts on people and sensitive ecosystems. This report identifies key oil spill research priorities, critical data and monitoring needs, mitigation strategies, and important operational and logistical issues. The Arctic acts as an integrating, regulating, and mediating component of the physical, atmospheric and cryospheric systems that govern life on Earth. Not only does the Arctic serve as regulator of many of the Earth's large-scale systems and processes, but it is also an area where choices made have substantial impact on life and choices everywhere on planet Earth. This report's recommendations will assist environmentalists, industry, state and local policymakers, and anyone interested in the future of this special region to preserve and protect it from damaging oil spills.
Supramolecular Gels Discover a current and authoritative overview of the cutting-edge in supramolecular gels from a leading voice in the field A promising new class of materials shows potential and is receiving increasing attention as an intelligent material for multifunctional systems. In a work that is sure to be of great interest to a wide variety of researchers, chemists, and engineers, Supramolecular Gels: Materials and Emerging Applications delivers an application-oriented and focused book exploring the most recent applications of supramolecular gels. This interdisciplinary book presents the underlying fundamentals of supramolecular gels before discussing their assembly mechanisms and structures. It also introduces different material systems, including composite supramolecular gels, organogels, hydrogels, self-healing, and graphene-based supramolecular gels. The book discusses current and emerging applications of these materials in devices like sensors and actuators, biomedical tools, and environmental applications. The distinguished author also offers valuable insights with respect to the design and character of brand-new versatile soft materials. Readers will also benefit from the inclusion of: A thorough introduction to the fundamentals of supramolecular gels, including their formation, classification, self-assembly, and mechanisms An exploration of supramolecular chirality and regulation in gel structures, as well as self-assembly and environmental applications of composite supramolecular gels Practical discussions of fluorescent organogels and hydrogels and their applications in analyte sensing An examination of self-healing and graphene-based supramolecular gels, and supramolecular gels for sensors and actuators Perfect for materials scientists, organic chemists, biochemists, catalytic chemists, and environmental chemists, Supramolecular Gels: Materials and Emerging Applications will also earn a place in the libraries of sensor developers and other professionals seeking a one-stop reference for this rapidly developing category of intelligent materials.
The definitive guide to petroleum hydrocarbon fuel spill and leak causes, prevention, response, and cost recovery Oil Spills and Gas Leaks highlights the complex nature of petroleum hydrocarbon fuel extraction methods, the unintended consequences when disasters occur, spill behavior, and environmental impact mitigation. This practical resource discusses engineering techniques; long-term biological and environmental effects; dealing with insurance claims, litigation, and legislation in overlapping jurisdictions; and much more. Featuring global case studies and best practices, this timely volume provides an in-depth understanding of how oil spills and gas leaks occur and describes the most effective environmental assessment, remediation, and restoration options available to respond to these industrial accidents. Coverage includes: The role of petroleum hydrocarbon fuels in society Geology and geochemistry of oil and gas deposits Oil and gas well drilling and production issues Hydraulic fracturing for shale gas and oil Behavior of oil spills in various environments Behavior of gas leaks in various environments Assessment of spills and leaks Toxicity issues and exposure pathways Subsurface investigations Sampling strategies and remedial approaches Sampling methods on land and offshore Prevention, oversight, and mitigation Remediation of oil spills Case histories and cost recovery Oil spills and wildlife Oil spills and safety issues Conclusions and recommendations
Biosurfactants for a Sustainable Future Explore the state-of-the-art in biosurfactant technology and its applications in environmental remediation, biomedicine, and biotechnology Biosurfactants for a Sustainable Future explores recent developments in biosurfactants and their use in a variety of cutting-edge applications. The book opens a window on the rapid development of microbiology by explaining how microbes and their products are used in advanced medical technology and in the sustainable remediation of emerging environmental contaminants. The book emphasizes the different techniques that are used for the production of biosurfactants from microorganisms and their characterization. Various aspects of biosurfactants, including structural characteristics, developments, production, bio-economics and their sustainable use in the environment and biomedicine, are addressed, and the book also presents metagenomic strategies to facilitate the discovery of novel biosurfactants producing microorganisms. Readers will benefit from the inclusion of: A thorough introduction to the state-of-the-art in biosurfactant technology, techniques, and applications An exploration of biosurfactant enhanced remediation of sediments contaminated with organics and inorganics A discussion of perspectives for biomedical and biotechnological applications of biosurfactants A review of the antiviral, antimicrobial, and antibiofilm potential of biosurfactants against multi-drug-resistant pathogens. An examination of biosurfactant-inspired control of methicillin-resistant Staphylococcus aureus Perfect for academic researchers and scientists working in the petrochemical industry, pharmaceutical industry, and in the agroindustry, Biosurfactants for a Sustainable Future will also earn a place in the libraries of scientists working in environmental biotechnology, environmental science, and biomedical engineering.
Approximately 3 million gallons of oil or refined petroleum products are spilled into U.S. waters every year. Oil dispersants (chemical agents such as surfactants, solvents, and other compounds) are used to reduce the effect of oil spills by changing the chemical and physical properties of the oil. By enhancing the amount of oil that physically mixes into the water, dispersants can reduce the potential that a surface slick will contaminate shoreline habitats. Although called for in the Oil Pollution Act of 1990 as a tool for minimizing the impact of oil spills, the use of chemical dispersants has long been controversial. This book reviews the adequacy of existing information and ongoing research regarding the effectiveness of dispersants as an oil spill response technique, as well as the effect of dispersed oil on marine and coastal ecosystems. Oil Spill Dispersants also includes recommended steps for policy makers faced with making hard choices regarding the use of dispersants as part of spill contingency planning efforts or during actual spills.
Wastewater pollution is a major issue in the context of the future circular economy because all matter should be ultimately reused, calling for efficient depollution techniques. This book present timely reviews on the treatment of wastewater contaminated by organic pollutants, with focus on aerobic granulation and degradation. Organic pollutants include microplastics, phthalates, humic acids, polycyclic aromatic hydrocarbons, pharmaceutical drugs and metabolites, plastics, oil spills, petroleum hydrocarbons, personal care products, tannery waste, dyes and pigments.