A clear and systematic treatment of time series of data, regular and chaotic, found in nonlinear systems. The text leads readers from measurements of one or more variables through the steps of building models of the source as a dynamical system, classifying the source by its dynamical characteristics, and finally predicting and controlling the dynamical system. It examines methods for separating the signal of physical interest from contamination by unwanted noise, and for investigating the phase space of the chaotic signal and its properties. The emphasis throughout is on the use of modern mathematical tools for investigating chaotic behaviour to uncover properties of physical systems, requiring knowledge of dynamical systems at the advanced undergraduate level and some knowledge of Fourier transforms and other signal processing methods.
The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.
On August 2000 in the Lomonosov Moscow State University the first scientific conference dedicated to chaos in the real astronomical systems was held. The most prominent astrophysisists - specialist in the field of stochastic dynamics - attended the conference. A broad scope of the problems related to the observed manifes tations of chaotic motions in galactic and stellar objects, with the involvement of basic theory and numerical modeling, were addressed. The idea (not so obvious, as we believe, to many astrophysicists) was to show that, while great progress in the field of stochastic mechanics was accomplished, the science of chaos in actually observed systems is only just being born. Basically, the situation described prompted the organizers to hold the meeting in order to discuss chaotic processes in real systems. It seemed worthwhile to begin these introductory remarks with a brief descrip tion of some events that preceeded the conference. Since actually existing systems are the subject of the natural sciences, and in the latter experiments play the key role, we shall begin our account with the experimental results.
Chaos exists in systems all around us. This introduction draws in philosophy, literature, and maths to explain Chaos Theory, showing the variety of its applications in the real world, from technology to global warming, politics, and even gambling on the stock market.
This volume is a collection of articles written by Professor M Ohya over the past three decades in the areas of quantum teleportation, quantum information theory, quantum computer, etc. By compiling Ohya's important works in these areas, the book serves as a useful reference for researchers who are working in these fields.
What happens to scientific knowledge when researchers outside the natural sciences bring elements of the latest trend across disciplinary boundaries for their own purposes? Researchers in fields from anthropology to family therapy and traffic planning employ the concepts, methods, and results of chaos theory to harness the disciplinary prestige of the natural sciences, to motivate methodological change or conceptual reorganization within their home discipline, and to justify public policies and aesthetic judgments. Using the recent explosion in the use (and abuse) of chaos theory, Borrowed Knowledge and the Challenge of Learning across Disciplines examines the relationship between science and other disciplines as well as the place of scientific knowledge within our broader culture. Stephen H. Kellert’s detailed investigation of the myriad uses of chaos theory reveals serious problems that can arise in the interchange between science and other knowledge-making pursuits, as well as opportunities for constructive interchange. By engaging with recent debates about interdisciplinary research, Kellert contributes a theoretical vocabulary and a set of critical frameworks for the rigorous examination of borrowing.
The conference 'Chaos in Astronomy' was held in Athens on 17-20 Sept. 2007. This book contains edited refereed contributions. It offers an overview to students and newcomers entering various fields of dynamical astronomy.
Ordinary Chaos looks at the real, almost-real, unreal, and once-real phenomena that hide behind the veneer of ordinariness. With Kimberly Kruge's deep focus, daily life unfurls into strangeness--time and space become malleable materials as her observations of seemingly normal objects and situations expand, take on meaning beyond their appearance, and begin a life of their own. As much as the poems address the quotidian, they also consider the mysteries of mortality, awe, mysticism, comprehension, and violence. The pages are laced with an honest sense of sensitivity, fragility, and even impending condemnation--resulting in poems that are resilient but not invulnerable. Kruge, who now makes her home in Guadalajara, Mexico, also explores the immigration process and navigating an adopted country. These experiences all contribute to her transcendent exploration of physical, emotional, and psychological geography.
Chaos Engineering teaches you to design and execute controlled experiments that uncover hidden problems. Summary Auto engineers test the safety of a car by intentionally crashing it and carefully observing the results. Chaos engineering applies the same principles to software systems. In Chaos Engineering: Site reliability through controlled disruption, you’ll learn to run your applications and infrastructure through a series of tests that simulate real-life failures. You'll maximize the benefits of chaos engineering by learning to think like a chaos engineer, and how to design the proper experiments to ensure the reliability of your software. With examples that cover a whole spectrum of software, you'll be ready to run an intensive testing regime on anything from a simple WordPress site to a massive distributed system running on Kubernetes. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Can your network survive a devastating failure? Could an accident bring your day-to-day operations to a halt? Chaos engineering simulates infrastructure outages, component crashes, and other calamities to show how systems and staff respond. Testing systems in distress is the best way to ensure their future resilience, which is especially important for complex, large-scale applications with little room for downtime. About the book Chaos Engineering teaches you to design and execute controlled experiments that uncover hidden problems. Learn to inject system-shaking failures that disrupt system calls, networking, APIs, and Kubernetes-based microservices infrastructures. To help you practice, the book includes a downloadable Linux VM image with a suite of preconfigured tools so you can experiment quickly—without risk. What's inside Inject failure into processes, applications, and virtual machines Test software running on Kubernetes Work with both open source and legacy software Simulate database connection latency Test and improve your team’s failure response About the reader Assumes Linux servers. Basic scripting skills required. About the author Mikolaj Pawlikowski is a recognized authority on chaos engineering. He is the creator of the Kubernetes chaos engineering tool PowerfulSeal, and the networking visibility tool Goldpinger. Table of Contents 1 Into the world of chaos engineering PART 1 - CHAOS ENGINEERING FUNDAMENTALS 2 First cup of chaos and blast radius 3 Observability 4 Database trouble and testing in production PART 2 - CHAOS ENGINEERING IN ACTION 5 Poking Docker 6 Who you gonna call? Syscall-busters! 7 Injecting failure into the JVM 8 Application-level fault injection 9 There's a monkey in my browser! PART 3 - CHAOS ENGINEERING IN KUBERNETES 10 Chaos in Kubernetes 11 Automating Kubernetes experiments 12 Under the hood of Kubernetes 13 Chaos engineering (for) people