In chassis development, the three aspects of safety, vehicle dynamics and ride comfort are at the top of the list of challenges to be faced. Addressing this triad of challenges becomes even more complex when the chassis is required to interact with assistance systems and other systems for fully automated driving. What is more, new demands are created by the introduction of modern electric and electronic architectures. All these requirements must be met by the chassis, together with its subsystems, the steering, brakes, tires and wheels. At the same time, all physical relationships and interactions have to be taken into account.
Internationally renowned media and literature scholars, social scientists, game designers and artists explore the cultural potential of computer games in this rich anthology, which introduces the latest approaches in the central fields of game studies and provides an extensive survey of contemporary game culture.
The key drivers of innovation in the field of chassis systems are measures to improve vehicle dynamics and driving safety, efforts to reduce fuel consumption, and intelligent development methods. In addition, chassis development is focusing on enhancing ride comfort while also improving NVH characteristics. At the same time, modularization strategies, concepts for the electrification of the powertrain, and steps towards greater system connectivity are making increasingly complex demands on the chassis and its development. Developers are being called upon to respond to these challenges with a variety of solutions.
The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.
The increasing automation of driving functions and the electrification of powertrains present new challenges for the chassis with regard to complexity, redundancy, data security, and installation space. At the same time, the mobility of the future will also require entirely new vehicle concepts, particularly in urban areas. The intelligent chassis must be connected, electrified, and automated in order to be best prepared for this future. Contents New Chassis Systems.- Handling and Vehicle Dynamics.- NVH – Acoustics and Vibration in the Chassis.- Smart Chassis, ADAS, and Autonomous Driving.- Lightweight Design.- Innovative Brake Systems.- Brakes and the Environment.- Electronic Chassis Systems.- Virtual Chassis Development and Homologation.- Innovative Steering Systems and Steer-by-Wire.- Development Process, System Properties and Architecture.- Innovations in Tires and Wheels. Target audiences Automotive engineers and chassis specialists as well as students looking for state-of-the-art information regarding their field of activity - Lecturers and instructors at universities and universities of applied sciences with the main subject of automotive engineering - Experts, researchers and development engineers of the automotive and the supplying industry Publisher ATZ live stands for top quality and a high level of specialist information and is part of Springer Nature, one of the leading publishing groups worldwide for scientific, educational and specialist literature. Partner TÜV SÜD is an international leading technical service organisation catering to the industry, mobility and certification segment.
A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers Key FeaturesExplore the building blocks of the visual perception system in self-driving carsIdentify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and PythonImprove the object detection and classification capabilities of systems with the help of neural networksBook Description The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field. You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You’ll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller. By the end of this book, you’ll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers. What you will learnUnderstand how to perform camera calibrationBecome well-versed with how lane detection works in self-driving cars using OpenCVExplore behavioral cloning by self-driving in a video-game simulatorGet to grips with using lidarsDiscover how to configure the controls for autonomous vehiclesUse object detection and semantic segmentation to locate lanes, cars, and pedestriansWrite a PID controller to control a self-driving car running in a simulatorWho this book is for This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.
The increasing portrayal of forensic investigative techniques in the popular media—CSI, for example, has resulted in criminals becoming "forensically aware" and more careful about leaving behind physical evidence at a crime scene. This presents law enforcement with a significant problem: how can they detect serial offenders if they cannot rely on physical forensic evidence? One solution comes from psychology. A growing body of research has amassed in the area of behavioral consistency and the detection of serial offenders. A number of innovations are taking place in the field that have important implications for the practice of crime linkage and its use by police and the courts. Crime Linkage: Theory, Research, and Practice assembles this research and discusses its practical use. Topics include: Theoretical explanations for how, when, and why we may (or may not) see similarities in a person’s crime scene behavior Consistency and distinctiveness in sexual offending An overview of crime linkage research conducted to date The use of crime linkage in the United Kingdom, South Africa, and the United States New directions for research and practice, including linking across crime types to expand the suspect pool The range of statistical methods used in research of crime linkage principles The book represents a collaboration of researchers and practitioners from across the globe who are recognized as experts in the area of behavioral consistency and detection of serial offenders. They provide a comprehensive and informative text on the psychological and criminological theories underpinning crime linkage, how it is used in practice, the challenges practitioners face, and current innovations that will shape the future of crime linkage research and practice. This book is in the Advances in Police Theory and Practice series.