Numerical Synthesis Algorithms and Antenna Designs for Next Generation Spaceborne Wind Scatterometer and CubeSat Antennas

Numerical Synthesis Algorithms and Antenna Designs for Next Generation Spaceborne Wind Scatterometer and CubeSat Antennas

Author: Jordan Budhu

Publisher:

Published: 2018

Total Pages: 227

ISBN-13:

DOWNLOAD EBOOK

Two novel aperture type antennas, both for next-generation space borne applications, are designed. The first is 3D printed, all-dielectric, inhomogeneous, shaped lens antenna designed to produce a conically scanned spinning spot beam. The electronic scan stems from a ring of feeds located along the ring focus designed into the azimuthally symmetric lens. The antenna is proposed for use in a space-borne scatterometer used to measure wind speeds upon the surface of the earth's oceans. The design requires the advent of a complex code hybridizing the Computational Electromagnetics method of Geometrical Optics with the optimization strategy of Particle Swarm Optimization. This code and its mathematical formulations, the resultant designs, and the measurements validating the codes and obtained designs are presented in this dissertation. The second is a new novel dual reflector Gregorian antenna system designed to meet the stringent requirements of the newly proposed CubeSat satellite paradigm by folding the optics into one of the most compact dual reflectors to date. The design combines a high gain reflectarray main aperture with an ellipsoidal subreflector fed by a patch array feed. The system is coplanar with the CubeSat chassis, deploying only the subreflector and thus has no moving cables or RF parts. This antenna design also requires a complex computer code to design. The code implemented to design the reflectarrays applies several novel acceleration strategies to the spectral domain method of moments algorithm in order to speed up the calculations. The theory and mathematical formulations behind this algorithm are also presented, as well as the resultant designs and measurements. The accelerated codes are used to design several Ka-Band reflectarrays. Measured and simulated results are provided.


CubeSat Handbook

CubeSat Handbook

Author: Chantal Cappelletti

Publisher: Academic Press

Published: 2020-09-25

Total Pages: 500

ISBN-13: 012817885X

DOWNLOAD EBOOK

CubeSat Handbook: From Mission Design to Operations is the first book solely devoted to the design, manufacturing, and in-orbit operations of CubeSats. Beginning with an historical overview from CubeSat co-inventors Robert Twiggs and Jordi Puig-Suari, the book is divided into 6 parts with contributions from international experts in the area of small satellites and CubeSats. It covers topics such as standard interfaces, on-board & ground software, industry standards in terms of control algorithms and sub-systems, systems engineering, standards for AITV (assembly, integration, testing and validation) activities, and launch regulations. This comprehensive resource provides all the information needed for engineers and developers in industry and academia to successfully design and launch a CubeSat mission. - Provides an overview on all aspects that a CubeSat developer needs to analyze during mission design and its realization - Features practical examples on how to design and deal with possible issues during a CubeSat mission - Covers new developments and technologies, including ThinSats and PocketQubeSats


GNSS Remote Sensing

GNSS Remote Sensing

Author: Shuanggen Jin

Publisher: Springer Science & Business Media

Published: 2013-10-01

Total Pages: 286

ISBN-13: 9400774826

DOWNLOAD EBOOK

The versatile and available GNSS signals can detect the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. This book presents the theory and methods of GNSS remote sensing as well as its applications in the atmosphere, oceans, land and hydrology. Ground-based atmospheric sensing, space-borne atmospheric sensing, reflectometry, ocean remote sensing, hydrology sensing as well as cryosphere sensing with the GNSS will be discussed per chapter in the book.


Achieving Science with CubeSats

Achieving Science with CubeSats

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2016-11-06

Total Pages: 131

ISBN-13: 030944263X

DOWNLOAD EBOOK

Space-based observations have transformed our understanding of Earth, its environment, the solar system and the universe at large. During past decades, driven by increasingly advanced science questions, space observatories have become more sophisticated and more complex, with costs often growing to billions of dollars. Although these kinds of ever-more-sophisticated missions will continue into the future, small satellites, ranging in mass between 500 kg to 0.1 kg, are gaining momentum as an additional means to address targeted science questions in a rapid, and possibly more affordable, manner. Within the category of small satellites, CubeSats have emerged as a space-platform defined in terms of (10 cm x 10 cm x 10 cm)- sized cubic units of approximately 1.3 kg each called "U's." Historically, CubeSats were developed as training projects to expose students to the challenges of real-world engineering practices and system design. Yet, their use has rapidly spread within academia, industry, and government agencies both nationally and internationally. In particular, CubeSats have caught the attention of parts of the U.S. space science community, which sees this platform, despite its inherent constraints, as a way to affordably access space and perform unique measurements of scientific value. The first science results from such CubeSats have only recently become available; however, questions remain regarding the scientific potential and technological promise of CubeSats in the future. Achieving Science with CubeSats reviews the current state of the scientific potential and technological promise of CubeSats. This report focuses on the platform's promise to obtain high- priority science data, as defined in recent decadal surveys in astronomy and astrophysics, Earth science and applications from space, planetary science, and solar and space physics (heliophysics); the science priorities identified in the 2014 NASA Science Plan; and the potential for CubeSats to advance biology and microgravity research. It provides a list of sample science goals for CubeSats, many of which address targeted science, often in coordination with other spacecraft, or use "sacrificial," or high-risk, orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms deploying tens to hundreds of CubeSats that function as one distributed array of measurements.


China Dream, Space Dream

China Dream, Space Dream

Author: Kevin Pollpeter

Publisher: CreateSpace

Published: 2015-03-10

Total Pages: 148

ISBN-13: 9781508792871

DOWNLOAD EBOOK

China's position in the world has been evolving. It seeks increased influence and independence from foreign powers with the ultimate goal of preserving China's sovereignty, independence, territorial integrity, and political system. Over the long term, China seeks to transform the international system to better suit its interests, but seeks to integrate itself into the existing international system over the short term with the goal of reshaping the Asia-Pacific political environment into one in which its interests must be given greater attention. China's pursuit of space power is intended to support this strategy. China views the development of space power as a necessary move for a country that wants to strengthen its national power. Indeed, China's goal is to become a space power on par with the United States and to foster a space industry that is the equal of those in the United States, Europe, and Russia. China takes a comprehensive, long-term approach to this goal that emphasizes the accrual of the military, economic, and political benefits space can provide.


Introduction to the Physics and Techniques of Remote Sensing

Introduction to the Physics and Techniques of Remote Sensing

Author: Charles Elachi

Publisher: John Wiley & Sons

Published: 2006-05-11

Total Pages: 572

ISBN-13: 0471783382

DOWNLOAD EBOOK

The science and engineering of remote sensing--theory and applications The Second Edition of this authoritative book offers readers the essential science and engineering foundation needed to understand remote sensing and apply it in real-world situations. Thoroughly updated to reflect the tremendous technological leaps made since the publication of the first edition, this book covers the gamut of knowledge and skills needed to work in this dynamic field, including: * Physics involved in wave-matter interaction, the building blocks for interpreting data * Techniques used to collect data * Remote sensing applications The authors have carefully structured and organized the book to introduce readers to the basics, and then move on to more advanced applications. Following an introduction, Chapter 2 sets forth the basic properties of electromagnetic waves and their interactions with matter. Chapters 3 through 7 cover the use of remote sensing in solid surface studies, including oceans. Each chapter covers one major part of the electromagnetic spectrum (e.g., visible/near infrared, thermal infrared, passive microwave, and active microwave). Chapters 8 through 12 then cover remote sensing in the study of atmospheres and ionospheres. Each chapter first presents the basic interaction mechanism, followed by techniques to acquire, measure, and study the information, or waves, emanating from the medium under investigation. In most cases, a specific advanced sensor is used for illustration. The book is generously illustrated with fifty percent new figures. Numerous illustrations are reproduced in a separate section of color plates. Examples of data acquired from spaceborne sensors are included throughout. Finally, a set of exercises, along with a solutions manual, is provided. This book is based on an upper-level undergraduate and first-year graduate course taught by the authors at the California Institute of Technology. Because of the multidisciplinary nature of the field and its applications, it is appropriate for students in electrical engineering, applied physics, geology, planetary science, astronomy, and aeronautics. It is also recommended for any engineer or scientist interested in working in this exciting field.


Wave Scattering from Rough Surfaces

Wave Scattering from Rough Surfaces

Author: Alexander G. Voronovich

Publisher: Springer Science & Business Media

Published: 2013-03-07

Total Pages: 239

ISBN-13: 3642599362

DOWNLOAD EBOOK

Since the fIrst edition of this book was published in the 1994, the theory of wave scattering from rough surfaces has continued to develop intensively. The community of researchers working in this area keeps growing, which provides justifIcation for issuing this second edition. In preparing the second edition, I was challenged by the problem of se lecting new material from the many important results obtained recently. Even tually, a new section was added to the central Chap. 6 of this book. This sec tion describes the operator expansion technique put forward by M. Milder, which conforms well with the general approach adopted in the book and which to my mind is one of the most promising. Remote sensing of the terrain and ocean surface represents one of the most important and interesting challenges to the theory of wave scattering from rough surfaces. Rapid progress in electronics results in sensors with new capabilities. New powerful computers and data communication systems allow more sophisticated data processing techniques. What information about soil or air-sea interaction processes can be obtained from gigaflops of data streaming from air-or space-borne radars? To use this information efficiently, one cannot rely entirely on heuristic approaches and needs adequate theory. I hope that this book will contribute to progress in this important area.


The Earth's Hydrological Cycle

The Earth's Hydrological Cycle

Author: L. Bengtsson

Publisher: Springer Science & Business

Published: 2014-05-02

Total Pages: 408

ISBN-13: 9401787891

DOWNLOAD EBOOK

This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the equivalent of 25 mm water for each column of air. Yet atmospheric water vapor is crucial for the Earth’s energy balance. The book gives an up to date presentation of the present knowledge. Previously published in Surveys in Geophysics, Volume 35, No. 3, 2014


Observation and Measurement of Ecohydrological Processes

Observation and Measurement of Ecohydrological Processes

Author: Xin Li

Publisher: Springer

Published: 2019-03-07

Total Pages: 0

ISBN-13: 9783662482964

DOWNLOAD EBOOK

This volume will discuss the state of the art of different observation and measurement techniques useful for ecohydrological studies. The techniques cover the entire spectrum of the water-soil-plant-atmosphere continuum. And the other volumes are "Water and Ecosystems", "Water-Limited Environments" and "Integrated Ecohydrological Modeling" etc.