Numerical Solution of Partial Differential Equations—III, SYNSPADE 1975

Numerical Solution of Partial Differential Equations—III, SYNSPADE 1975

Author: Bert Hubbard

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 510

ISBN-13: 1483262367

DOWNLOAD EBOOK

Numerical Solution of Partial Differential Equations—III: Synspade 1975 provides information pertinent to those difficult problems in partial differential equations exhibiting some type of singular behavior. This book covers a variety of topics, including the mathematical models and their relation to experiment as well as the behavior of solutions of the partial differential equations involved. Organized into 16 chapters, this book begins with an overview of elastodynamic results for stress intensity factors of a bifurcating crack. This text then discusses the effects of nonlinearities, such as bifurcation, which occur in problems of nonlinear mechanics. Other chapters consider the equations of changing type and those with rapidly oscillating coefficients. This book discusses as well the effective computational methods for numerical solutions. The final chapter deals with the principal results on G-convergence, such as the convergence of the Green's operators for Dirichlet's and other boundary problems. This book is a valuable resource for engineers and mathematicians.


Numerical Approximation of Partial Differential Equations

Numerical Approximation of Partial Differential Equations

Author: E.L. Ortiz

Publisher: Elsevier

Published: 1987-02-01

Total Pages: 447

ISBN-13: 0080872441

DOWNLOAD EBOOK

This selection of papers is concerned with problems arising in the numerical solution of differential equations, with an emphasis on partial differential equations. There is a balance between theoretical studies of approximation processes, the analysis of specific numerical techniques and the discussion of their application to concrete problems relevant to engineering and science. Special consideration has been given to innovative numerical techniques and to the treatment of three-dimensional and singular problems. These topics are discussed in several of the invited papers.The contributed papers are divided into five parts: techniques of approximation theory which are basic to the numerical treatment of differential equations; numerical techniques based on discrete processes; innovative methods based on polynomial and rational approximation; variational inequalities, conformal transformation and asymptotic techniques; and applications of differential equations to problems in science and engineering.


Adaptive Methods for Partial Differential Equations

Adaptive Methods for Partial Differential Equations

Author: Ivo Babushka

Publisher: SIAM

Published: 1989-01-01

Total Pages: 382

ISBN-13: 9780898712421

DOWNLOAD EBOOK

"Proceedings of the Workshop on Adaptive Computational Methods for Partial Differential Equations, Rensselaer Polytechnic Institute, October 13-15, 1988"--T.p. verso.


Mathematical Analysis and Numerical Methods for Science and Technology

Mathematical Analysis and Numerical Methods for Science and Technology

Author: Robert Dautray

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 503

ISBN-13: 3642615317

DOWNLOAD EBOOK

The advent of high-speed computers has made it possible for the first time to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every facet of technical and industrial activity has been affected by these developments. The objective of the present work is to compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.


The Finite Element Method for Elliptic Problems

The Finite Element Method for Elliptic Problems

Author: P.G. Ciarlet

Publisher: Elsevier

Published: 1978-01-01

Total Pages: 551

ISBN-13: 0080875254

DOWNLOAD EBOOK

The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.


Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Optimal Control Problems for Partial Differential Equations on Reticulated Domains

Author: Peter I. Kogut

Publisher: Springer Science & Business Media

Published: 2011-09-09

Total Pages: 639

ISBN-13: 0817681493

DOWNLOAD EBOOK

In the development of optimal control, the complexity of the systems to which it is applied has increased significantly, becoming an issue in scientific computing. In order to carry out model-reduction on these systems, the authors of this work have developed a method based on asymptotic analysis. Moving from abstract explanations to examples and applications with a focus on structural network problems, they aim at combining techniques of homogenization and approximation. Optimal Control Problems for Partial Differential Equations on Reticulated Domains is an excellent reference tool for graduate students, researchers, and practitioners in mathematics and areas of engineering involving reticulated domains.