This book presents recent material science-based and mechanical analysis-based advances in joining processes. It includes all related processes, e.g. friction stir welding, joining by plastic deformation, laser welding, clinch joining, and adhesive bonding, as well as hybrid joints. It gathers selected full-length papers from the 1st Conference on Advanced Joining Processes.
Drawing on state-of-the-art research results, Resistance Welding: Fundamentals and Applications, Second Edition systematically presents fundamental aspects of important processes in resistance welding and discusses their implications on real-world welding applications. This updated edition describes progress made in resistance welding research and
This book is a compilation of the recent progress on friction stir technologies including high-temperature applications, industrial applications, dissimilar alloy/materials, lightweight alloys, simulation, control, characterization, and derivative technologies. The volume offers a current look at friction stir welding technology from application to characterization and from modeling to R&D. Contributions document advances in application, controls, and simulation of the friction stir process to aid researchers in seeing the current state-of-the-art.
This book covers the rapidly growing area of friction stir welding. It also addresses the use of the technology for other types of materials processing, including superplastic forming, casting modification, and surface treatments. The book has been prepared to serve as the first general reference on friction stir technology,. Information is provided on tools, machines, process modeling, material flow, microstructural development and properties. Materials addressed include aluminum alloys, titanium alloys, steels, nickel-base alloys, and copper alloys. The chapters have been written by the leading experts in this field, representing leading industrial companies and university and government research insititutions.
This book describes the fundamentals of residual stresses in friction stir welding and reviews the data reported for various materials. Residual stresses produced during manufacturing processes lead to distortion of structures. It is critical to understand and mitigate residual stresses. From the onset of friction stir welding, claims have been made about the lower magnitude of residual stresses. The lower residual stresses are partly due to lower peak temperature and shorter time at temperature during friction stir welding. A review of residual stresses that result from the friction stir process and strategies to mitigate it have been presented. Friction stir welding can be combined with additional in-situ and ex-situ manufacturing steps to lower the final residual stresses. Modeling of residual stresses highlights the relationship between clamping constraint and development of distortion. For many applications, management of residual stresses can be critical for qualification of component/structure. - Reviews magnitude of residual stresses in various metals and alloys - Discusses mitigation strategies for residual stresses during friction stir welding - Covers fundamental origin of residual stresses and distortion
• Updated edition of a best-selling title • Author brings 25 years experience to the work • Addresses the key issues of economy and environment Marine pipelines for the transportation of oil and gas have become a safe and reliable way to exploit the valuable resources below the world's seas and oceans. The design of these pipelines is a relatively new technology and continues to evolve in its quest to reduce costs and minimise the effect on the environment. With over 25years experience, Professor Yong Bai has been able to assimilate the essence of the applied mechanics aspects of offshore pipeline system design in a form of value to students and designers alike. It represents an excellent source of up to date practices and knowledge to help equip those who wish to be part of the exciting future of this industry.
This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.
This book gathers selected papers presented at the Second International Conference on Intelligent Manufacturing and Automation (ICIMA 2020), which was jointly organized by the Departments of Mechanical Engineering and Production Engineering at Dwarkadas J. Sanghvi College of Engineering (DJSCE), Mumbai, and by the Indian Society of Manufacturing Engineers (ISME). Covering a range of topics in intelligent manufacturing, automation, advanced materials and design, it focuses on the latest advances in e.g. CAD/CAM/CAE/CIM/FMS in manufacturing, artificial intelligence in manufacturing, IoT in manufacturing, product design & development, DFM/DFA/FMEA, MEMS & nanotechnology, rapid prototyping, computational techniques, nano- & micro-machining, sustainable manufacturing, industrial engineering, manufacturing process management, modelling & optimization techniques, CRM, MRP & ERP, green, lean & agile manufacturing, logistics & supply chain management, quality assurance & environmental protection, advanced material processing & characterization of composite & smart materials. The book is intended as a reference guide for future researchers, and as a valuable resource for students in graduate and doctoral programmes.
This book presents selected peer reviewed papers from the International Conference on Advanced Production and Industrial Engineering (ICAPIE 2019). It covers a wide range of topics and latest research in mechanical systems engineering, materials engineering, micro-machining, renewable energy, industrial and production engineering, and additive manufacturing. Given the range of topics discussed, this book will be useful for students and researchers primarily working in mechanical and industrial engineering, and energy technologies.
This volume presents a selection of papers from the 2nd International Conference on Computational Methods in Manufacturing (ICCMM 2019). The papers cover the recent advances in computational methods for simulating various manufacturing processes like machining, laser welding, laser bending, strip rolling, surface characterization and measurement. Articles in this volume discuss both the development of new methods and the application and efficacy of existing computational methods in manufacturing sector. This volume will be of interest to researchers in both industry and academia working on computational methods in manufacturing.