The Atmospheric Boundary Layer

The Atmospheric Boundary Layer

Author: J. R. Garratt

Publisher: Cambridge University Press

Published: 1994-04-21

Total Pages: 340

ISBN-13: 9780521467452

DOWNLOAD EBOOK

The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.


Wildland Fire Dynamics

Wildland Fire Dynamics

Author: Kevin Speer

Publisher: Cambridge University Press

Published: 2022-06-30

Total Pages: 263

ISBN-13: 1108498558

DOWNLOAD EBOOK

An overview of recent advances in the quantitative modeling of wildland fire based on fluid dynamics, including a discussion of the mathematical and dynamical principles. Providing a state-of-the-art survey, it is a useful reference for scientists, researchers, and graduate students interested in fire behavior from a range of fields.


Atmospheric Physics

Atmospheric Physics

Author: Ulrich Schumann

Publisher: Springer Science & Business Media

Published: 2012-07-17

Total Pages: 884

ISBN-13: 3642301835

DOWNLOAD EBOOK

On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.


Numerical Simulation of Canopy Flows

Numerical Simulation of Canopy Flows

Author: Günter Groß

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 243

ISBN-13: 364275676X

DOWNLOAD EBOOK

Starting with the description of meteorological variables in forest canopies and its parameter variations, a numerical three-dimentional model is developed. Its applicability is demonstrated, first, by wind sheltering effects of hedges and, second, by the effects of deforestation on local climate in complex terrain. Scientists in ecology, agricultural botany and meteorology, but also urban and regional lanners will profit from this study finding the most effective solution for their specific problems.


Fundamentals of Boundary-Layer Meteorology

Fundamentals of Boundary-Layer Meteorology

Author: Xuhui Lee

Publisher: Springer Nature

Published: 2023-09-12

Total Pages: 376

ISBN-13: 3031326687

DOWNLOAD EBOOK

This book is filled with didactic elements such as exercises, charts and case study examples. It introduces a set of fundamental equations that govern the conservation of mass (dry air, water vapor, trace gases), momentum and energy in the lower atmosphere. It offers students an up-to-date literature overview and introduces theory to a field that is mostly empirical in nature. Dedicated to undergraduate or graduate students in atmospheric sciences and meteorology, this textbook compels students about the importance of the subject and its application. Simplifications of each of the equations are made in the context of boundary-layer processes. Extended from these equations the author then discusses a set of issues fundamental to boundary layer meteorology, including (1) turbulence generation and destruction, (2) force balance in various portions of the lower atmosphere, (3) canopy flow, (4) tracer diffusion and footprint theory, (5) principles of flux measurement and interpretation, (6) models for land evaporation, (7) models for surface temperature response to land use change, and (8) boundary layer budget calculations for heat, water vapor and carbon dioxide. This second edition is enhanced with new materials on the marine boundary layer and on three contemporary topics: the urban boundary layer, the polluted boundary layer and the cloudy boundary layer in a changing climate. Problem sets are supplied at the end of each chapter to reinforce the concepts and theory presented in the main text. This volume offers the accumulation of insights gained by the author during his academic career as a researcher and teacher in the field of boundary-layer meteorology


Mesoscale Modeling of the Atmosphere

Mesoscale Modeling of the Atmosphere

Author: Roger Pielke

Publisher: Springer

Published: 2015-03-30

Total Pages: 166

ISBN-13: 1935704125

DOWNLOAD EBOOK

This book provides an overview of several components of mesoscale modeling: boundary conditions, subgrid-scale parameterization, moisture processes, and radiation. Also included are mesoscale model comparisons using data from the U.S. Army's Project WIND (Winds in Non-uniform Domains).


The Forest-Atmosphere Interaction

The Forest-Atmosphere Interaction

Author: B.A. Hutchison

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 683

ISBN-13: 9400953054

DOWNLOAD EBOOK

The effects of meteorological phenomena upon forest produc tivity and forestry operations have been of concern for many years. With the evolution of system-level studies of forest eco system structure and function in the International Biological Program and elsewhere, more fundamental interactions between forest ecosystems and the atmosphere received scientific atten tion but the emphasis on meteorological and climatological effects on forest processes remained. More recently, as recogni tion has developed of potential and actual problems associated with the atmospheric transport, dispersion, and deposition of airborne pollutants, the effects of forest canopies upon boundary-layer meteorological phenomena has come under scientific scrutiny. Looking to the future, with rising atmospheric con centrations of C02 and increasing competition for the finite fresh-water resources of the earth, interest in the role of forests in global C02 and water balances can also be expected to intensify. Thus, the nature of forest canopy-atmosphere interac tions, that is to say, the meteorological phenomena occurring in and above forest canopies, are of importance to a wide variety of scientific and social-issues. Demands for forest meteorological information currently exceed levels of knowledge and given the economic constraints of science in general and environmental sciences in particular, chances for major improvements in scien tific support in the near future are slim. Unfortunately, studies of environmental phenomena in and above forests are costly and logistically difficult. Trees, the ecological dominants of forest ecosystems, are the largest of all terrestrial organisms.