Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time

Author: Harold Kushner

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 480

ISBN-13: 146130007X

DOWNLOAD EBOOK

Stochastic control is a very active area of research. This monograph, written by two leading authorities in the field, has been updated to reflect the latest developments. It covers effective numerical methods for stochastic control problems in continuous time on two levels, that of practice and that of mathematical development. It is broadly accessible for graduate students and researchers.


Numerical Methods for Stochastic Control Problems in Continuous Time

Numerical Methods for Stochastic Control Problems in Continuous Time

Author: Harold J. Kushner

Publisher: Springer Science & Business Media

Published: 2001

Total Pages: 496

ISBN-13: 9780387951393

DOWNLOAD EBOOK

The required background is surveyed, and there is an extensive development of methods of approximation and computational algorithms. The book is written on two levels: algorithms and applications, and mathematical proofs. Thus, the ideas should be very accessible to a broad audience."--BOOK JACKET.


Numerical Solution of Stochastic Differential Equations

Numerical Solution of Stochastic Differential Equations

Author: Peter E. Kloeden

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 666

ISBN-13: 3662126168

DOWNLOAD EBOOK

The numerical analysis of stochastic differential equations (SDEs) differs significantly from that of ordinary differential equations. This book provides an easily accessible introduction to SDEs, their applications and the numerical methods to solve such equations. From the reviews: "The authors draw upon their own research and experiences in obviously many disciplines... considerable time has obviously been spent writing this in the simplest language possible." --ZAMP


Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time

Author: Atle Seierstad

Publisher: Springer Science & Business Media

Published: 2008-11-11

Total Pages: 299

ISBN-13: 0387766162

DOWNLOAD EBOOK

This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.


Deterministic and Stochastic Optimal Control

Deterministic and Stochastic Optimal Control

Author: Wendell H. Fleming

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 231

ISBN-13: 1461263808

DOWNLOAD EBOOK

This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.


Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Optimal Stochastic Control, Stochastic Target Problems, and Backward SDE

Author: Nizar Touzi

Publisher: Springer Science & Business Media

Published: 2012-09-25

Total Pages: 219

ISBN-13: 1461442869

DOWNLOAD EBOOK

This book collects some recent developments in stochastic control theory with applications to financial mathematics. We first address standard stochastic control problems from the viewpoint of the recently developed weak dynamic programming principle. A special emphasis is put on the regularity issues and, in particular, on the behavior of the value function near the boundary. We then provide a quick review of the main tools from viscosity solutions which allow to overcome all regularity problems. We next address the class of stochastic target problems which extends in a nontrivial way the standard stochastic control problems. Here the theory of viscosity solutions plays a crucial role in the derivation of the dynamic programming equation as the infinitesimal counterpart of the corresponding geometric dynamic programming equation. The various developments of this theory have been stimulated by applications in finance and by relevant connections with geometric flows. Namely, the second order extension was motivated by illiquidity modeling, and the controlled loss version was introduced following the problem of quantile hedging. The third part specializes to an overview of Backward stochastic differential equations, and their extensions to the quadratic case.​


Numerical Methods for Stochastic Computations

Numerical Methods for Stochastic Computations

Author: Dongbin Xiu

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 142

ISBN-13: 1400835348

DOWNLOAD EBOOK

The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples


Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Author: Rene Carmona

Publisher: SIAM

Published: 2016-02-18

Total Pages: 263

ISBN-13: 1611974240

DOWNLOAD EBOOK

The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.


Dynamic Management Decision And Stochastic Control Processes

Dynamic Management Decision And Stochastic Control Processes

Author: Toshio Odanaka

Publisher: World Scientific

Published: 1990-01-01

Total Pages: 236

ISBN-13: 9814507121

DOWNLOAD EBOOK

This book treats stochastic control theory and its applications in management. The main numerical techniques necessary for such applications are presented. Several advanced topics leading to optimal processes are dismissed. The book also considers the theory of some stochastic control processes and several applications to illustrate the ideas.


Rational Matrix Equations in Stochastic Control

Rational Matrix Equations in Stochastic Control

Author: Tobias Damm

Publisher: Springer Science & Business Media

Published: 2004-01-23

Total Pages: 228

ISBN-13: 9783540205166

DOWNLOAD EBOOK

This book is the first comprehensive treatment of rational matrix equations in stochastic systems, including various aspects of the field, previously unpublished results and explicit examples. Topics include modelling with stochastic differential equations, stochastic stability, reformulation of stochastic control problems, analysis of the rational matrix equation and numerical solutions. Primarily a survey in character, this monograph is intended for researchers, graduate students and engineers in control theory and applied linear algebra.