Numerical Methods for Least Squares Problems

Numerical Methods for Least Squares Problems

Author: Ake Bjorck

Publisher: SIAM

Published: 1996-01-01

Total Pages: 425

ISBN-13: 9781611971484

DOWNLOAD EBOOK

The method of least squares was discovered by Gauss in 1795. It has since become the principal tool to reduce the influence of errors when fitting models to given observations. Today, applications of least squares arise in a great number of scientific areas, such as statistics, geodetics, signal processing, and control. In the last 20 years there has been a great increase in the capacity for automatic data capturing and computing. Least squares problems of large size are now routinely solved. Tremendous progress has been made in numerical methods for least squares problems, in particular for generalized and modified least squares problems and direct and iterative methods for sparse problems. Until now there has not been a monograph that covers the full spectrum of relevant problems and methods in least squares. This volume gives an in-depth treatment of topics such as methods for sparse least squares problems, iterative methods, modified least squares, weighted problems, and constrained and regularized problems. The more than 800 references provide a comprehensive survey of the available literature on the subject.


Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Author: J. E. Dennis, Jr.

Publisher: SIAM

Published: 1996-12-01

Total Pages: 394

ISBN-13: 9781611971200

DOWNLOAD EBOOK

This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.


Solving Least Squares Problems

Solving Least Squares Problems

Author: Charles L. Lawson

Publisher: SIAM

Published: 1995-12-01

Total Pages: 348

ISBN-13: 0898713560

DOWNLOAD EBOOK

This Classic edition includes a new appendix which summarizes the major developments since the book was originally published in 1974. The additions are organized in short sections associated with each chapter. An additional 230 references have been added, bringing the bibliography to over 400 entries. Appendix C has been edited to reflect changes in the associated software package and software distribution method.


Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems

Author: Roland Glowinski

Publisher: Springer

Published: 2013-10-03

Total Pages: 493

ISBN-13: 9783662126158

DOWNLOAD EBOOK

This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.


The Total Least Squares Problem

The Total Least Squares Problem

Author: Sabine Van Huffel

Publisher: SIAM

Published: 1991-01-01

Total Pages: 302

ISBN-13: 0898712750

DOWNLOAD EBOOK

This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.


Applied Numerical Linear Algebra

Applied Numerical Linear Algebra

Author: James W. Demmel

Publisher: SIAM

Published: 1997-08-01

Total Pages: 426

ISBN-13: 0898713897

DOWNLOAD EBOOK

This comprehensive textbook is designed for first-year graduate students from a variety of engineering and scientific disciplines.


Numerical Algorithms

Numerical Algorithms

Author: Justin Solomon

Publisher: CRC Press

Published: 2015-06-24

Total Pages: 400

ISBN-13: 1482251892

DOWNLOAD EBOOK

Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig


Newton Methods for Nonlinear Problems

Newton Methods for Nonlinear Problems

Author: Peter Deuflhard

Publisher: Springer Science & Business Media

Published: 2005-01-13

Total Pages: 444

ISBN-13: 9783540210993

DOWNLOAD EBOOK

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.


Numerical Matrix Analysis

Numerical Matrix Analysis

Author: Ilse C. F. Ipsen

Publisher: SIAM

Published: 2009-07-23

Total Pages: 135

ISBN-13: 0898716764

DOWNLOAD EBOOK

Matrix analysis presented in the context of numerical computation at a basic level.


Least Squares Data Fitting with Applications

Least Squares Data Fitting with Applications

Author: Per Christian Hansen

Publisher: JHU Press

Published: 2013-01-15

Total Pages: 325

ISBN-13: 1421408589

DOWNLOAD EBOOK

A lucid explanation of the intricacies of both simple and complex least squares methods. As one of the classical statistical regression techniques, and often the first to be taught to new students, least squares fitting can be a very effective tool in data analysis. Given measured data, we establish a relationship between independent and dependent variables so that we can use the data predictively. The main concern of Least Squares Data Fitting with Applications is how to do this on a computer with efficient and robust computational methods for linear and nonlinear relationships. The presentation also establishes a link between the statistical setting and the computational issues. In a number of applications, the accuracy and efficiency of the least squares fit is central, and Per Christian Hansen, Víctor Pereyra, and Godela Scherer survey modern computational methods and illustrate them in fields ranging from engineering and environmental sciences to geophysics. Anyone working with problems of linear and nonlinear least squares fitting will find this book invaluable as a hands-on guide, with accessible text and carefully explained problems. Included are • an overview of computational methods together with their properties and advantages • topics from statistical regression analysis that help readers to understand and evaluate the computed solutions • many examples that illustrate the techniques and algorithms Least Squares Data Fitting with Applications can be used as a textbook for advanced undergraduate or graduate courses and professionals in the sciences and in engineering.