The Finite Element Method for Solid and Structural Mechanics

The Finite Element Method for Solid and Structural Mechanics

Author: O. C. Zienkiewicz

Publisher: Elsevier

Published: 2005-08-09

Total Pages: 653

ISBN-13: 0080455581

DOWNLOAD EBOOK

This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling


Constitutive Modeling of Engineering Materials

Constitutive Modeling of Engineering Materials

Author: Vladimir Buljak

Publisher: Academic Press

Published: 2021-02-18

Total Pages: 330

ISBN-13: 0128146974

DOWNLOAD EBOOK

Constitutive Modeling of Engineering Materials provides an extensive theoretical overview of elastic, plastic, damage, and fracture models, giving readers the foundational knowledge needed to successfully apply them to and solve common engineering material problems. Particular attention is given to inverse analysis, parameter identification, and the numerical implementation of models with the finite element method. Application in practice is discussed in detail, showing examples of working computer programs for simple constitutive behaviors. Examples explore the important components of material modeling which form the building blocks of any complex constitutive behavior. - Addresses complex behaviors in a wide range of materials, from polymers, to metals and shape memory alloys - Covers constitutive models with both small and large deformations - Provides detailed examples of computer implementations for material models


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods

Author: Franz Roters

Publisher: John Wiley & Sons

Published: 2011-08-04

Total Pages: 188

ISBN-13: 3527642099

DOWNLOAD EBOOK

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.


Finite Element Analysis in Geotechnical Engineering

Finite Element Analysis in Geotechnical Engineering

Author: David M Potts

Publisher: Thomas Telford

Published: 2001

Total Pages: 456

ISBN-13: 9780727727831

DOWNLOAD EBOOK

An insight into the use of the finite method in geotechnical engineering. The first volume covers the theory and the second volume covers the applications of the subject. The work examines popular constitutive models, numerical techniques and case studies.


Numerical Modeling of AAR

Numerical Modeling of AAR

Author: Victor Saouma

Publisher: CRC Press

Published: 2014-02-05

Total Pages: 326

ISBN-13: 0415636973

DOWNLOAD EBOOK

This reference book presents the theory and methodology to conduct a finite element assessment of concrete structures subjected to chemically induced volumetric expansion in general and alkali aggregate reaction in particular. It is limited to models developed by the author, and focuses on how to best address a simple question: if a structure suffers from AAR, how is its structural integrity jeopardized, and when would the reaction end. Subjects treated are: • Brief overview of AAR: nature of the chemical reactions, AAR in both dams and nuclear power plants, and how does it impact the mechanical properties of concrete. • Constitutive model for both the AAR expansion, and concrete nonlinearities (both smeared and discrete crack models). • Validation of the model along with a parametric study to assess what are the critical parameters in a study. • Selection of material properties for an AAR finite element simulation, followed by applications in dams and massive reinforced concrete structures. • Micro Model for improved understanding of the essence of the reaction, along with a newly proposed mathematical model for the kinetics of the reaction. • Review of relevant procedures to estimate the residual expansion of a structure suffering from AAR, along with a proposed approach to determine when the reaction will end. The book is extensively illustrated with numerous figures and provides guidance to engineers confronted with swelling in concrete infrastructures.


The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications

Author: Mats G. Larson

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 403

ISBN-13: 3642332870

DOWNLOAD EBOOK

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​


Constitutive Modelling of Granular Materials

Constitutive Modelling of Granular Materials

Author: Dimitrios Kolymbas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 558

ISBN-13: 3642570186

DOWNLOAD EBOOK

In view of its extreme complexity the mathematical description of the mechanical behaviour of granular materials is an extremely difficult task. Today many different models compete with each other. However, the complexity of the models hinders their comparison, and the potential users are confused and, often, disencouraged. This book is expected to serve as a milestone in the present situation, to evaluate the present methodes, to clear up the situation, to focus and encourage for further research activities.


Continuum Mechanics

Continuum Mechanics

Author: Franco M. Capaldi

Publisher: Cambridge University Press

Published: 2012-06-18

Total Pages: 359

ISBN-13: 1139510576

DOWNLOAD EBOOK

This is a modern textbook for courses in continuum mechanics. It provides both the theoretical framework and the numerical methods required to model the behaviour of continuous materials. This self-contained textbook is tailored for advanced undergraduate or first-year graduate students with numerous step-by-step derivations and worked-out examples. The author presents both the general continuum theory and the mathematics needed to apply it in practice. The derivation of constitutive models for ideal gases, fluids, solids and biological materials, and the numerical methods required to solve the resulting differential equations, are also detailed. Specifically, the text presents the theory and numerical implementation for the finite difference and the finite element methods in the Matlab® programming language. It includes thirteen detailed Matlab® programs illustrating how constitutive models are used in practice.


Constitutive Models for Rubber VII

Constitutive Models for Rubber VII

Author: Stephen Jerrams

Publisher: CRC Press

Published: 2011-09-09

Total Pages: 476

ISBN-13: 0415683890

DOWNLOAD EBOOK

All aspects of our lives, industry, health, travel and leisure, are utterly reliant on rubber materials, yet typically this notion rarely occurs to us. Increasingly, greater demands are made on elastomeric compounds and we seek elevated performance in terms of improved physical and chemical properties. In particular, we have come to expect rubber components (tyres, vibration isolators, seals etc) to exhibit exceptional wear and fatigue resistance, often at elevated temperatures. Unsurprisingly then, the emphasis in characterising isochoric materials has shifted significantly away from understanding and modelling hyperelastic material behaviour, to a position where we can confi dently design and manufacture rubber components having the functionality and resilience to meet the dynamic loading and harsh environmental conditions that are prevalent today. In consequence, state-of-the-art technology in terms of dynamic response and fatigue resistance are strongly represented here along with numerous insights into advanced elastomers used in novel applications. This development is not at the expense of research devoted to current test procedures and the constitutive equations and algorithms that underpin finite element methods. As a result, Constitutive Models for Rubber VII is not only essential reading for undergraduates, postgraduates, academics and researchers working in the discipline, but also for all those designers and engineers involved in the improvement of machines and devices by introducing new and novel elastomers possessing elevated properties.