Numerical Methods for Nonlinear Variational Problems

Numerical Methods for Nonlinear Variational Problems

Author: Roland Glowinski

Publisher: Springer

Published: 2013-10-03

Total Pages: 493

ISBN-13: 9783662126158

DOWNLOAD EBOOK

This book describes the mathematical background and reviews the techniques for solving problems, including those that require large computations such as transonic flows for compressible fluids and the Navier-Stokes equations for incompressible viscous fluids. Finite element approximations and non-linear relaxation, and nonlinear least square methods are all covered in detail, as are many applications. This volume is a classic in a long-awaited softcover re-edition.


Variational Inequalities and Frictional Contact Problems

Variational Inequalities and Frictional Contact Problems

Author: Anca Capatina

Publisher: Springer

Published: 2014-09-16

Total Pages: 242

ISBN-13: 3319101633

DOWNLOAD EBOOK

Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.


Combined Relaxation Methods for Variational Inequalities

Combined Relaxation Methods for Variational Inequalities

Author: Igor Konnov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 190

ISBN-13: 3642568866

DOWNLOAD EBOOK

Variational inequalities proved to be a very useful and powerful tool for in vestigation and solution of many equilibrium type problems in Economics, Engineering, Operations Research and Mathematical Physics. In fact, varia tional inequalities for example provide a unifying framework for the study of such diverse problems as boundary value problems, price equilibrium prob lems and traffic network equilibrium problems. Besides, they are closely re lated with many general problems of Nonlinear Analysis, such as fixed point, optimization and complementarity problems. As a result, the theory and so lution methods for variational inequalities have been studied extensively, and considerable advances have been made in these areas. This book is devoted to a new general approach to constructing solution methods for variational inequalities, which was called the combined relax ation (CR) approach. This approach is based on combining, modifying and generalizing ideas contained in various relaxation methods. In fact, each com bined relaxation method has a two-level structure, i.e., a descent direction and a stepsize at each iteration are computed by finite relaxation procedures.


Contact Problems in Elasticity

Contact Problems in Elasticity

Author: N. Kikuchi

Publisher: SIAM

Published: 1988-01-01

Total Pages: 508

ISBN-13: 9781611970845

DOWNLOAD EBOOK

The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.


Convex Analysis and Variational Problems

Convex Analysis and Variational Problems

Author: Ivar Ekeland

Publisher: SIAM

Published: 1999-12-01

Total Pages: 414

ISBN-13: 9781611971088

DOWNLOAD EBOOK

This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.


Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models

Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models

Author: F. Giannessi

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 304

ISBN-13: 0306480263

DOWNLOAD EBOOK

The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.


Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces

Author: Michael Ulbrich

Publisher: SIAM

Published: 2011-07-28

Total Pages: 315

ISBN-13: 1611970687

DOWNLOAD EBOOK

A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.


Variational and Quasi-Variational Inequalities in Mechanics

Variational and Quasi-Variational Inequalities in Mechanics

Author: Alexander S. Kravchuk

Publisher: Springer Science & Business Media

Published: 2007-09-04

Total Pages: 337

ISBN-13: 1402063776

DOWNLOAD EBOOK

The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.


Nonlinear Inclusions and Hemivariational Inequalities

Nonlinear Inclusions and Hemivariational Inequalities

Author: Stanisław Migórski

Publisher: Springer Science & Business Media

Published: 2012-09-18

Total Pages: 293

ISBN-13: 146144232X

DOWNLOAD EBOOK

This book introduces the reader the theory of nonlinear inclusions and hemivariational inequalities with emphasis on the study of contact mechanics. The work covers both abstract results in the area of nonlinear inclusions, hemivariational inequalities as well as the study of specific contact problems, including their modelling and their variational analysis. Provided results are based on original research on the existence, uniqueness, regularity and behavior of the solution for various classes of nonlinear stationary and evolutionary inclusions. In carrying out the variational analysis of various contact models, one systematically uses results of hemivariational inequalities and, in this way, illustrates the applications of nonlinear analysis in contact mechanics. New mathematical methods are introduced and applied in the study of nonlinear problems, which describe the contact between a deformable body and a foundation. Contact problems arise in industry, engineering and geophysics. Their variational analysis presented in this book lies the background for their numerical analysis. This volume will interest mathematicians, applied mathematicians, engineers, and scientists as well as advanced graduate students.