The transient analysis of electrical networks has become very important for both HVAC and HVDC systems, due to significant changes introduced through the connection of renewable energy sources. Numerical Analysis of Power System Transients and Dynamics describes the three major power system transient and dynamics simulation tools based on a circuit-theory based approach which are most widely used all over the world (EMTP-ATP, EMTP-RV and EMTDC/PSCAD), together with another powerful simulation tool called numerical electromagnetic analysis method. This book is ideal for researchers involved in the analysis of power systems for development and optimization, and will also be of interest to professionals and Ph. D. students working with power systems.
For a one-semester senior or beginning graduate level course in power system dynamics. This text begins with the fundamental laws for basic devices and systems in a mathematical modeling context. It includes systematic derivations of standard synchronous machine models with their fundamental controls. These individual models are interconnected for system analysis and simulation. Singular perturbation is used to derive and explain reduced-order models.
A hands-on introduction to advanced applications of power system transients with practical examples Transient Analysis of Power Systems: A Practical Approach offers an authoritative guide to the traditional capabilities and the new software and hardware approaches that can be used to carry out transient studies and make possible new and more complex research. The book explores a wide range of topics from an introduction to the subject to a review of the many advanced applications, involving the creation of custom-made models and tools and the application of multicore environments for advanced studies. The authors cover the general aspects of the transient analysis such as modelling guidelines, solution techniques and capabilities of a transient tool. The book also explores the usual application of a transient tool including over-voltages, power quality studies and simulation of power electronics devices. In addition, it contains an introduction to the transient analysis using the ATP. All the studies are supported by practical examples and simulation results. This important book: Summarises modelling guidelines and solution techniques used in transient analysis of power systems Provides a collection of practical examples with a detailed introduction and a discussion of results Includes a collection of case studies that illustrate how a simulation tool can be used for building environments that can be applied to both analysis and design of power systems Offers guidelines for building custom-made models and libraries of modules, supported by some practical examples Facilitates application of a transients tool to fields hardly covered with other time-domain simulation tools Includes a companion website with data (input) files of examples presented, case studies and power point presentations used to support cases studies Written for EMTP users, electrical engineers, Transient Analysis of Power Systems is a hands-on and practical guide to advanced applications of power system transients that includes a range of practical examples.
This comprehensive text offers a detailed treatment of modelling of components and sub-systems for studying the transient and dynamic stability of large-scale power systems. Beginning with an overview of basic concepts of stability of simple systems, the book is devoted to in-depth coverage of modelling of synchronous machine and its excitation systems and speed governing controllers. Apart from covering the modelling aspects, methods of interfacing component models for the analysis of small-signal stability of power systems are presented in an easy-to-understand manner. The book also offers a study of simulation of transient stability of power systems as well as electromagnetic transients involving synchronous machines. Practical data pertaining to power systems, numerical examples and derivations are interspersed throughout the text to give students practice in applying key concepts. This text serves as a well-knit introduction to Power System Dynamics and is suitable for a one-semester course for the senior-level undergraduate students of electrical engineering and postgraduate students specializing in Power Systems. Contents: contents Preface 1. ONCE OVER LIGHTLY 2. POWER SYSTEM STABILITY—ELEMENTARY ANALYSIS 3. SYNCHRONOUS MACHINE MODELLING FOR POWER SYSTEM DYNAMICS 4. MODELLING OF OTHER COMPONENTS FOR DYNAMIC ANALYSIS 5. OVERVIEW OF NUMERICAL METHODS 6. SMALL-SIGNAL STABILITY ANALYSIS OF POWER SYSTEMS 7. TRANSIENT STABILITY ANALYSIS OF POWER SYSTEMS 8. SUBSYNCHRONOUS AND TORSIONAL OSCILLATIONS 9. ENHANCEMENT AND COUNTERMEASURES Index
Electromagnetic transients simulation (EMTS) has become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds. This book provides a thorough review of EMTS and many simple examples are included to clarify difficult concepts. This book will be of particular value to advanced engineering students and practising power systems engineers.
Understanding transient phenomena in electric power systems and the harmful impact of resulting disturbances is an important aspect of power system operation and resilience. Bridging the gap from theory to practice, this guide introduces the fundamentals of transient phenomena affecting electric power systems using the numerical analysis tools, Alternative Transients Program- Electromagnetic Transients Program (ATP-EMTP) and ATP-DRAW. This technology is widely-applied to recognize and solve transient problems in power networks and components giving readers a highly practical and relevant perspective and the skills to analyse new transient phenomena encountered in the field. Key features: Introduces novice engineers to transient phenomena using commonplace tools and models as well as background theory to link theory to practice. Develops analysis skills using the ATP-EMTP program, which is widely used in the electric power industry. Comprehensive coverage of recent developments such as HVDC power electronics with several case studies and their practical results. Provides extensive practical examples with over 150 data files for analysing transient phenomena and real life practical examples via a companion website. Written by experts with deep experience in research, teaching and industry, this text defines transient phenomena in an electric power system and introduces a professional transient analysis tool with real examples to novice engineers in the electric power system industry. It also offers instruction for graduates studying all aspects of power systems.
The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance. This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability. Key features: Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients. Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging). Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems. Illustrates the application of EMT tools to the analysis and simulation of smart grids.
Classic power system dynamics text now with phasor measurement and simulation toolbox This new edition addresses the needs of dynamic modeling and simulation relevant to power system planning, design, and operation, including a systematic derivation of synchronous machine dynamic models together with speed and voltage control subsystems. Reduced-order modeling based on integral manifolds is used as a firm basis for understanding the derivations and limitations of lower-order dynamic models. Following these developments, multi-machine model interconnected through the transmission network is formulated and simulated using numerical simulation methods. Energy function methods are discussed for direct evaluation of stability. Small-signal analysis is used for determining the electromechanical modes and mode-shapes, and for power system stabilizer design. Time-synchronized high-sampling-rate phasor measurement units (PMUs) to monitor power system disturbances have been implemented throughout North America and many other countries. In this second edition, new chapters on synchrophasor measurement and using the Power System Toolbox for dynamic simulation have been added. These new materials will reinforce power system dynamic aspects treated more analytically in the earlier chapters. Key features: Systematic derivation of synchronous machine dynamic models and simplification. Energy function methods with an emphasis on the potential energy boundary surface and the controlling unstable equilibrium point approaches. Phasor computation and synchrophasor data applications. Book companion website for instructors featuring solutions and PowerPoint files. Website for students featuring MATLABTM files. Power System Dynamics and Stability, 2nd Edition, with Synchrophasor Measurement and Power System Toolbox combines theoretical as well as practical information for use as a text for formal instruction or for reference by working engineers.
The market liberalization is expected to affect drastically the operation of power systems, which under economical pressure and increasing amount of transactions are being operated much closer to their limits than previously. These changes put the system operators faced with rather different and much more problematic scenarios than in the past. They have now to calculate available transfer capabilities and manage congestion problems in a near on line environment, while operating the transmission system under extremely stressed conditions. This requires highly reliable and efficient software aids, which today are non-existent, or not yet in use. One of the most problematic issues, very much needed but not yet en countered today, is on-line dynamic security assessment and control, enabling the power system to withstand unexpected contingencies without experienc ing voltage or transient instabilities. This monograph is devoted to a unified approach to transient stability assessment and control, called SIngle Machine Equivalent (S1ME).
Power system modelling and scripting is a quite general and ambitious title. Of course, to embrace all existing aspects of power system modelling would lead to an encyclopedia and would be likely an impossible task. Thus, the book focuses on a subset of power system models based on the following assumptions: (i) devices are modelled as a set of nonlinear differential algebraic equations, (ii) all alternate-current devices are operating in three-phase balanced fundamental frequency, and (iii) the time frame of the dynamics of interest ranges from tenths to tens of seconds. These assumptions basically restrict the analysis to transient stability phenomena and generator controls. The modelling step is not self-sufficient. Mathematical models have to be translated into computer programming code in order to be analyzed, understood and “experienced”. It is an object of the book to provide a general framework for a power system analysis software tool and hints for filling up this framework with versatile programming code. This book is for all students and researchers that are looking for a quick reference on power system models or need some guidelines for starting the challenging adventure of writing their own code.