Numerical Methods for Delay Differential Equations

Numerical Methods for Delay Differential Equations

Author: Alfredo Bellen

Publisher: Numerical Mathematics and Scie

Published: 2013-01-10

Total Pages: 411

ISBN-13: 0199671370

DOWNLOAD EBOOK

This unique book describes, analyses, and improves various approaches and techniques for the numerical solution of delay differential equations. It includes a list of available codes and also aids the reader in writing his or her own.


Delay and Functional Differential Equations and Their Applications

Delay and Functional Differential Equations and Their Applications

Author: Klaus Schmitt

Publisher: Elsevier

Published: 2014-05-10

Total Pages: 414

ISBN-13: 1483272338

DOWNLOAD EBOOK

Delay and Functional Differential Equations and Their Applications provides information pertinent to the fundamental aspects of functional differential equations and its applications. This book covers a variety of topics, including qualitative and geometric theory, control theory, Volterra equations, numerical methods, the theory of epidemics, problems in physiology, and other areas of applications. Organized into two parts encompassing 25 chapters, this book begins with an overview of problems involving functional differential equations with terminal conditions in function spaces. This text then examines the numerical methods for functional differential equations. Other chapters consider the theory of radiative transfer, which give rise to several interesting functional partial differential equations. This book discusses as well the theory of embedding fields, which studies systems of nonlinear functional differential equations that can be derived from psychological postulates and interpreted as neural networks. The final chapter deals with the usefulness of the flip-flop circuit. This book is a valuable resource for mathematicians.


Stability of Numerical Methods for Delay Differential Equations

Stability of Numerical Methods for Delay Differential Equations

Author: Jiaoxun Kuang

Publisher: Elsevier

Published: 2005

Total Pages: 312

ISBN-13: 9787030163172

DOWNLOAD EBOOK

Distributed by Elsevier Science on behalf of Science Press. Available internationally for the first time, this book introduces the basic concepts and theory of the stability of numerical methods for solving differential equations, with emphasis on delay differential equations and basic techniques for proving stability of numerical methods. It is a desirable reference for engineers and academic researchers and can also be used by graduate students in mathematics, physics, and engineering. Emphasis on the stability of numerical methods for solving delay differential equations, which is vital for engineers and researchers applying these mathematical models Introduces basic concepts and theory as well as basic techniques for readers to apply in practice Can be used as for graduate courses or as a reference book for researchers and engineers in related areas Written by leading mathematicians from Shanghai Normal University in China


Numerical Analysis Of Ordinary Differential Equations And Its Applications

Numerical Analysis Of Ordinary Differential Equations And Its Applications

Author: Taketomo Mitsui

Publisher: World Scientific

Published: 1995-10-12

Total Pages: 240

ISBN-13: 9814500569

DOWNLOAD EBOOK

The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.


Stability of Linear Delay Differential Equations

Stability of Linear Delay Differential Equations

Author: Dimitri Breda

Publisher: Springer

Published: 2014-10-21

Total Pages: 162

ISBN-13: 149392107X

DOWNLOAD EBOOK

This book presents the authors' recent work on the numerical methods for the stability analysis of linear autonomous and periodic delay differential equations, which consist in applying pseudospectral techniques to discretize either the solution operator or the infinitesimal generator and in using the eigenvalues of the resulting matrices to approximate the exact spectra. The purpose of the book is to provide a complete and self-contained treatment, which includes the basic underlying mathematics and numerics, examples from population dynamics and engineering applications, and Matlab programs implementing the proposed numerical methods. A number of proofs is given to furnish a solid foundation, but the emphasis is on the (unifying) idea of the pseudospectral technique for the stability analysis of DDEs. It is aimed at advanced students and researchers in applied mathematics, in dynamical systems and in various fields of science and engineering, concerned with delay systems. A relevant feature of the book is that it also provides the Matlab codes to encourage the readers to experience the practical aspects. They could use the codes to test the theory and to analyze the performances of the methods on the given examples. Moreover, they could easily modify them to tackle the numerical stability analysis of their own delay models.


Numerical Analysis of Ordinary and Delay Differential Equations

Numerical Analysis of Ordinary and Delay Differential Equations

Author: Taketomo Mitsui

Publisher: Springer Nature

Published: 2023-05-23

Total Pages: 118

ISBN-13: 9811992630

DOWNLOAD EBOOK

This book serves as a concise textbook for students in an advanced undergraduate or first-year graduate course in various disciplines such as applied mathematics, control, and engineering, who want to understand the modern standard of numerical methods of ordinary and delay differential equations. Experts in the same fields can also learn about the recent developments in numerical analysis of such differential systems. Ordinary differential equations (ODEs) provide a strong mathematical tool to express a wide variety of phenomena in science and engineering. Along with its own significance, one of the powerful directions toward which ODEs extend is to incorporate an unknown function with delayed argument. This is called delay differential equations (DDEs), which often appear in mathematical modelling of biology, demography, epidemiology, and control theory. In some cases, the solution of a differential equation can be obtained by algebraic combinations of known mathematical functions. In many practical cases, however, such a solution is quite difficult or unavailable, and numerical approximations are called for. Modern development of computers accelerates the situation and, moreover, launches more possibilities of numerical means. Henceforth, the knowledge and expertise of the numerical solution of differential equations becomes a requirement in broad areas of science and engineering. One might think that a well-organized software package such as MATLAB serves much the same solution. In a sense, this is true; but it must be kept in mind that blind employment of software packages misleads the user. The gist of numerical solution of differential equations still must be learned. The present book is intended to provide the essence of numerical solutions of ordinary differential equations as well as of delay differential equations. Particularly, the authors noted that there are still few concise textbooks of delay differential equations, and then they set about filling the gap through descriptions as transparent as possible. Major algorithms of numerical solution are clearly described in this book. The stability of solutions of ODEs and DDEs is crucial as well. The book introduces the asymptotic stability of analytical and numerical solutions and provides a practical way to analyze their stability by employing a theory of complex functions.


Numerical Analysis of Ordinary Differential Equations and Its Applications

Numerical Analysis of Ordinary Differential Equations and Its Applications

Author: Taketomo Mitsui

Publisher: World Scientific

Published: 1995

Total Pages: 244

ISBN-13: 9789810222291

DOWNLOAD EBOOK

The book collects original articles on numerical analysis of ordinary differential equations and its applications. Some of the topics covered in this volume are: discrete variable methods, Runge-Kutta methods, linear multistep methods, stability analysis, parallel implementation, self-validating numerical methods, analysis of nonlinear oscillation by numerical means, differential-algebraic and delay-differential equations, and stochastic initial value problems.


Stability and Oscillations in Delay Differential Equations of Population Dynamics

Stability and Oscillations in Delay Differential Equations of Population Dynamics

Author: K. Gopalsamy

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 514

ISBN-13: 9401579202

DOWNLOAD EBOOK

This monograph provides a definitive overview of recent advances in the stability and oscillation of autonomous delay differential equations. Topics include linear and nonlinear delay and integrodifferential equations, which have potential applications to both biological and physical dynamic processes. Chapter 1 deals with an analysis of the dynamical characteristics of the delay logistic equation, and a number of techniques and results relating to stability, oscillation and comparison of scalar delay and integrodifferential equations are presented. Chapter 2 provides a tutorial-style introduction to the study of delay-induced Hopf bifurcation to periodicity and the related computations for the analysis of the stability of bifurcating periodic solutions. Chapter 3 is devoted to local analyses of nonlinear model systems and discusses many methods applicable to linear equations and their perturbations. Chapter 4 considers global convergence to equilibrium states of nonlinear systems, and includes oscillations of nonlinear systems about their equilibria. Qualitative analyses of both competitive and cooperative systems with time delays feature in both Chapters 3 and 4. Finally, Chapter 5 deals with recent developments in models of neutral differential equations and their applications to population dynamics. Each chapter concludes with a number of exercises and the overall exposition recommends this volume as a good supplementary text for graduate courses. For mathematicians whose work involves functional differential equations, and whose interest extends beyond the boundaries of linear stability analysis.