Advanced Number Theory with Applications

Advanced Number Theory with Applications

Author: Richard A. Mollin

Publisher: CRC Press

Published: 2009-08-26

Total Pages: 440

ISBN-13: 1420083295

DOWNLOAD EBOOK

Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo


Elementary Number Theory with Applications

Elementary Number Theory with Applications

Author: Thomas Koshy

Publisher: Elsevier

Published: 2007-05-08

Total Pages: 801

ISBN-13: 0080547095

DOWNLOAD EBOOK

This second edition updates the well-regarded 2001 publication with new short sections on topics like Catalan numbers and their relationship to Pascal's triangle and Mersenne numbers, Pollard rho factorization method, Hoggatt-Hensell identity. Koshy has added a new chapter on continued fractions. The unique features of the first edition like news of recent discoveries, biographical sketches of mathematicians, and applications--like the use of congruence in scheduling of a round-robin tournament--are being refreshed with current information. More challenging exercises are included both in the textbook and in the instructor's manual. Elementary Number Theory with Applications 2e is ideally suited for undergraduate students and is especially appropriate for prospective and in-service math teachers at the high school and middle school levels. * Loaded with pedagogical features including fully worked examples, graded exercises, chapter summaries, and computer exercises * Covers crucial applications of theory like computer security, ISBNs, ZIP codes, and UPC bar codes * Biographical sketches lay out the history of mathematics, emphasizing its roots in India and the Middle East


Applications of Number Theory to Numerical Analysis

Applications of Number Theory to Numerical Analysis

Author: L.-K. Hua

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 252

ISBN-13: 3642678297

DOWNLOAD EBOOK

Owing to the developments and applications of computer science, ma thematicians began to take a serious interest in the applications of number theory to numerical analysis about twenty years ago. The progress achieved has been both important practically as well as satisfactory from the theoretical view point. It'or example, from the seventeenth century till now, a great deal of effort was made in developing methods for approximating single integrals and there were only a few works on multiple quadrature until the 1950's. But in the past twenty years, a number of new methods have been devised of which the number theoretic method is an effective one. The number theoretic method may be described as follows. We use num ber theory to construct a sequence of uniformly distributed sets in the s dimensional unit cube G , where s ~ 2. Then we use the sequence to s reduce a difficult analytic problem to an arithmetic problem which may be calculated by computer. For example, we may use the arithmetic mean of the values of integrand in a given uniformly distributed set of G to ap s proximate the definite integral over G such that the principal order of the s error term is shown to be of the best possible kind, if the integrand satis fies certain conditions.


Number Theory With Applications

Number Theory With Applications

Author: Wen-ching Li

Publisher: World Scientific Publishing Company

Published: 1996-02-16

Total Pages: 243

ISBN-13: 9813104856

DOWNLOAD EBOOK

Novel and important applications of number theory to graph theory and vice versa had been made in the past decade. The two main tools used are based on the estimates of character sums and the estimates of the eigenvalues of Hecke operators, both are rooted in the celebrated Weil conjectures settled by Deligne in 1973. The purpose of this book is to give, from scratch, a coherent and comprehensive introduction to the topics in number theory related to the central tools, with the ultimate goal of presenting their applications. This book includes many important subjects in number theory, such as Weil conjectures, Riemann-Roch theorem, L-functions, character sum estimates, modular forms, and representation theory.


From Great Discoveries in Number Theory to Applications

From Great Discoveries in Number Theory to Applications

Author: Michal Křížek

Publisher: Springer Nature

Published: 2021-09-21

Total Pages: 342

ISBN-13: 3030838994

DOWNLOAD EBOOK

This book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.


Number Theory with Applications

Number Theory with Applications

Author: James Andrew Anderson

Publisher: Pearson

Published: 1997

Total Pages: 584

ISBN-13:

DOWNLOAD EBOOK

For undergraduate courses in Number Theory for mathematics, computer science, and engineering majors. Ideal for students of varying mathematical sophistication, this text provides a self-contained logical development of basic number theory, supplemented with numerous applications and advanced topics.


Fundamental Number Theory with Applications

Fundamental Number Theory with Applications

Author: Richard A. Mollin

Publisher: CRC Press

Published: 2008-02-21

Total Pages: 382

ISBN-13: 1420066617

DOWNLOAD EBOOK

An update of the most accessible introductory number theory text available, Fundamental Number Theory with Applications, Second Edition presents a mathematically rigorous yet easy-to-follow treatment of the fundamentals and applications of the subject. The substantial amount of reorganizing makes this edition clearer and more elementary in its coverage. New to the Second Edition • Removal of all advanced material to be even more accessible in scope • New fundamental material, including partition theory, generating functions, and combinatorial number theory • Expanded coverage of random number generation, Diophantine analysis, and additive number theory • More applications to cryptography, primality testing, and factoring • An appendix on the recently discovered unconditional deterministic polynomial-time algorithm for primality testing Taking a truly elementary approach to number theory, this text supplies the essential material for a first course on the subject. Placed in highlighted boxes to reduce distraction from the main text, nearly 70 biographies focus on major contributors to the field. The presentation of over 1,300 entries in the index maximizes cross-referencing so students can find data with ease.


Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications

Author: Kenneth H. Rosen

Publisher:

Published: 2007

Total Pages: 109

ISBN-13: 9780071244749

DOWNLOAD EBOOK

The companion Web site -- To the student -- The foundations : logic, sets, and functions -- The fundamentals : algorithms, the integers, and matrices -- Mathematical reasoning -- Counting -- Advanced counting techniques -- Relations -- Graphs -- Trees -- Boolean algebra -- Modeling computation


Computational Number Theory

Computational Number Theory

Author: Abhijit Das

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 614

ISBN-13: 1482205823

DOWNLOAD EBOOK

Developed from the author's popular graduate-level course, Computational Number Theory presents a complete treatment of number-theoretic algorithms. Avoiding advanced algebra, this self-contained text is designed for advanced undergraduate and beginning graduate students in engineering. It is also suitable for researchers new to the field and pract


A Course in Number Theory

A Course in Number Theory

Author: H. E. Rose

Publisher: Oxford University Press

Published: 1995

Total Pages: 420

ISBN-13: 9780198523765

DOWNLOAD EBOOK

This textbook covers the main topics in number theory as taught in universities throughout the world. Number theory deals mainly with properties of integers and rational numbers; it is not an organized theory in the usual sense but a vast collection of individual topics and results, with some coherent sub-theories and a long list of unsolved problems. This book excludes topics relying heavily on complex analysis and advanced algebraic number theory. The increased use of computers in number theory is reflected in many sections (with much greater emphasis in this edition). Some results of a more advanced nature are also given, including the Gelfond-Schneider theorem, the prime number theorem, and the Mordell-Weil theorem. The latest work on Fermat's last theorem is also briefly discussed. Each chapter ends with a collection of problems; hints or sketch solutions are given at the end of the book, together with various useful tables.