Number Theory, Madras 1987
Author: Krishnaswami Alladi
Publisher: Springer
Published: 2006-11-14
Total Pages: 240
ISBN-13: 3540466819
DOWNLOAD EBOOKRead and Download eBook Full
Author: Krishnaswami Alladi
Publisher: Springer
Published: 2006-11-14
Total Pages: 240
ISBN-13: 3540466819
DOWNLOAD EBOOKAuthor: Edmund Hlawka
Publisher: Springer
Published: 2006-11-14
Total Pages: 230
ISBN-13: 3540468641
DOWNLOAD EBOOKAuthor: George E Andrews
Publisher: World Scientific
Published: 2024-08-19
Total Pages: 704
ISBN-13: 9811277389
DOWNLOAD EBOOKThis volume reflects the contributions stemming from the conference Analytic and Combinatorial Number Theory: The Legacy of Ramanujan which took place at the University of Illinois at Urbana-Champaign on June 6-9, 2019. The conference included 26 plenary talks, 71 contributed talks, and 170 participants. As was the case for the conference, this book is in honor of Bruce C Berndt and in celebration of his mathematics and his 80th birthday.Along with a number of papers previously appearing in Special Issues of the International Journal of Number Theory, the book collects together a few more papers, a biography of Bruce by Atul Dixit and Ae Ja Yee, a preface by George Andrews, a gallery of photos from the conference, a number of speeches from the conference banquet, the conference poster, a list of Bruce's publications at the time this volume was created, and a list of the talks from the conference.
Author: Mourad Ismail
Publisher: Cambridge University Press
Published: 2005-11-21
Total Pages: 748
ISBN-13: 9780521782012
DOWNLOAD EBOOKThe first modern treatment of orthogonal polynomials from the viewpoint of special functions is now available in paperback.
Author: Bruce C. Berndt
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 630
ISBN-13: 1461216249
DOWNLOAD EBOOKThe fifth and final volume to establish the results claimed by the great Indian mathematician Srinivasa Ramanujan in his "Notebooks" first published in 1957. Although each of the five volumes contains many deep results, the average depth in this volume is possibly greater than in the first four. There are several results on continued fractions - a subject that Ramanujan loved very much. It is the authors wish that this and previous volumes will serve as springboards for further investigations by mathematicians intrigued by Ramanujans remarkable ideas.
Author: Haakon Waadeland
Publisher: Springer Science & Business Media
Published: 2008-04-01
Total Pages: 321
ISBN-13: 9491216376
DOWNLOAD EBOOKContinued Fractions consists of two volumes — Volume 1: Convergence Theory; and Volume 2: Representation of Functions (tentative title), which is expected in 2011. Volume 1 is dedicated to the convergence and computation of continued fractions, while Volume 2 will treat representations of meromorphic functions by continued fractions. Taken together, the two volumes will present the basic continued fractions theory without requiring too much previous knowledge; some basic knowledge of complex functions will suffice. Both new and advanced graduate students of continued fractions shall get a comprehensive understanding of how these infinite structures work in a number of applications, and why they work so well. A varied buffet of possible applications to whet the appetite is presented first, before the more basic but modernized theory is given. This new edition is the result of an increasing interest in computing special functions by means of continued fractions. The methods described in detail are, in many cases, very simple, yet reliable and efficient.
Author: Lisa Lorentzen
Publisher: atlantis press
Published: 2008
Total Pages: 321
ISBN-13: 9078677074
DOWNLOAD EBOOKContinued Fractions consists of two volumes -- Volume 1: Convergence Theory; and Volume 2: Representation of Functions (tentative title), which is expected in 2011. Volume 1 is dedicated to the convergence and computation of continued fractions, while Volume 2 will treat representations of meromorphic functions by continued fractions. Taken together, the two volumes will present the basic continued fractions theory without requiring too much previous knowledge; some basic knowledge of complex functions will suffice. Both new and advanced graduate students of continued fractions shall get a comprehensive understanding of how these infinite structures work in a number of applications, and why they work so well. A varied buffet of possible applications to whet the appetite is presented first, before the more basic but modernized theory is given.This new edition is the result of an increasing interest in computing special functions by means of continued fractions. The methods described in detail are, in many cases, very simple, yet reliable and efficient.
Author: Krishnaswami Alladi
Publisher: Springer Nature
Published: 2021-09-17
Total Pages: 265
ISBN-13: 9811562415
DOWNLOAD EBOOKThe First Edition of the book is a collection of articles, all by the author, on the Indian mathematical genius Srinivasa Ramanujan as well as on some of the greatest mathematicians in history whose life and works have things in common with Ramanujan. It presents a unique comparative study of Ramanujan’s spectacular discoveries and remarkable life with the monumental contributions of various mathematical luminaries, some of whom, like Ramanujan, overcame great difficulties in life. Also, among the articles are reviews of three important books on Ramanujan’s mathematics and life. In addition, some aspects of Ramanujan’s contributions, such as his remarkable formulae for the number pi, his path-breaking work in the theory of partitions, and his fundamental observations on quadratic forms, are discussed. Finally, the book describes various current efforts to ensure that the legacy of Ramanujan will be preserved and continue to thrive in the future. This Second Edition is an expanded version of the first with six more articles by the author. Of note is the inclusion of a detailed review of the movie The Man Who Knew Infinity, a description of the fundamental work of the SASTRA Ramanujan Prize Winners, and an account of the Royal Society Conference to honour Ramanujan’s legacy on the centenary of his election as FRS.
Author: Yuri G. Borisovich
Publisher: Springer
Published: 2006-11-15
Total Pages: 289
ISBN-13: 3540472231
DOWNLOAD EBOOKThis volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm maps of non-negativeindex and its applications to global bifurcation of solutions.- A.A. Bolibruch: Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem.- I.V. Bronstein, A.Ya. Kopanskii: Finitely smooth normal forms of vector fields in the vicinity of a rest point.- B.D. Gel'man: Generalized degree of multi-valued mappings.- G.N. Khimshiashvili: On Fredholmian aspects of linear transmission problems.- A.S. Mishchenko: Stationary solutions of nonlinear stochastic equations.- B.Yu. Sternin, V.E. Shatalov: Continuation of solutions to elliptic equations and localisation of singularities.- V.G. Zvyagin, V.T. Dmitrienko: Properness of nonlinear elliptic differential operators in H|lder spaces.
Author:
Publisher:
Published: 1998
Total Pages: 1294
ISBN-13:
DOWNLOAD EBOOK