Electronic and nuclear quantum dynamics of molecules in intense laser fields
Author: Yuichi Fujimura
Publisher: Frontiers Media SA
Published: 2023-04-28
Total Pages: 161
ISBN-13: 2832522114
DOWNLOAD EBOOKRead and Download eBook Full
Author: Yuichi Fujimura
Publisher: Frontiers Media SA
Published: 2023-04-28
Total Pages: 161
ISBN-13: 2832522114
DOWNLOAD EBOOKAuthor: Yuichi Fujimura
Publisher: World Scientific
Published: 2011
Total Pages: 195
ISBN-13: 981283723X
DOWNLOAD EBOOKIn recent years, there has been rapid growth in the research field of real-time observation of nuclear and electronic dynamics in molecules. Its time range extends from femtoseconds to attoseconds. This has been made possible by the development of both laser technology and time-dependent theoretical treatments. Indeed, this research field is arguably the most active one in molecular science, second only to femtosecond chemistry. The outcome of the research is expected to make an important contribution to physics, materials science and biology as well as chemistry. In this monograph, the fundamental theories and methods, as well as experimental methods and results, of real-time observation of both nuclear and electronic motions in molecular systems are described. It is suitable for researchers who want to make an active contribution to the new research field and for graduate students who are interested in ultra-fast nuclear and electron dynamics in molecular systems.
Author: Kaoru Yamanouchi
Publisher: Springer
Published: 2014-08-09
Total Pages: 248
ISBN-13: 3319067311
DOWNLOAD EBOOKThe PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries. This eleventh volume covers a broad range of topics from this interdisciplinary research field, focusing on ultrafast dynamics of molecules in intense laser fields, pulse shaping techniques for controlling molecular processes, high-order harmonics generation and attosecond Photoionization, femtosecond laser induced filamentation and laser particle acceleration.
Author: Dimitri Batani
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 409
ISBN-13: 1461513510
DOWNLOAD EBOOKThe recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm , has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been proposed, which is based on the separation of the compression and the ignition phases in laser-driven ICF. The aim of this course on "Atom, Solids and Plasmas in Super-Intense Laser fields" was to bring together senior researchers and students in atomic and molecular physics, laser physics, condensed matter and plasma physics, in order to review recent developments in high-intensity laser-matter interactions. The course was held at the Ettore Majorana International Centre for Scientific Culture in Erice from July 8 to July 14,2000.
Author: Dimitri Batani
Publisher: Springer Science & Business Media
Published: 2001-09-30
Total Pages: 434
ISBN-13: 9780306466151
DOWNLOAD EBOOKProceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily
Author: Yunquan Liu
Publisher: World Scientific
Published: 2015-09-29
Total Pages: 248
ISBN-13: 9814696404
DOWNLOAD EBOOKThis volume presents the latest advancements and future perspectives of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to a wide range of quantum systems, with an emphasis on the understanding of ionization, high-harmonic generation, molecular orbital imaging and coherent control phenomena originating from light-matter interactions. The book overviews current research landscape and highlight major scientific trends in AMO physics interfacing with interdisciplinary sciences. It may be particularly interesting for young researchers working on establishing their scientific interests and goals.
Author: H.G. Muller
Publisher: Springer Science & Business Media
Published: 1996-05-31
Total Pages: 630
ISBN-13: 9780792340485
DOWNLOAD EBOOKAtoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.
Author: Jie Liu
Publisher: Springer Science & Business Media
Published: 2013-09-30
Total Pages: 88
ISBN-13: 3642405495
DOWNLOAD EBOOKThe ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers in the field of laser physics, atom molecule physics and theoretical physics. Dr. Jie Liu is a professor of Institute of Applied Physics and Computational Mathematics, China and Peking University.
Author: Kirsten Schnorr
Publisher: Springer
Published: 2014-12-29
Total Pages: 198
ISBN-13: 3319121391
DOWNLOAD EBOOKThis book explores the relaxation dynamics of inner-valence-ionized diatomic molecules on the basis of extreme-ultraviolet pump-probe experiments performed at the free-electron laser (FEL) in Hamburg. Firstly, the electron rearrangement dynamics in dissociating multiply charged iodine molecules is studied in an experiment that made it possible to access charge transfer in a thus far unexplored quasimolecular regime relevant for plasma and chemistry applications of the FEL. Secondly the lifetime of an efficient non-radiative relaxation process that occurs in weakly bound systems is measured directly for the first time in a neon dimer (Ne2). Interatomic Coulombic decay (ICD) has been identified as the dominant decay mechanism in inner-valence-ionized or excited van-der-Waals and hydrogen bonded systems, the latter being ubiquitous in all biomolecules. The role of ICD in DNA damage thus demands further investigation, e.g. with regard to applications like radiation therapy.
Author: Marc J J Vrakking
Publisher: Royal Society of Chemistry
Published: 2018-08-31
Total Pages: 512
ISBN-13: 1788015134
DOWNLOAD EBOOKAttosecond science is a new and rapidly developing research area in which molecular dynamics are studied at the timescale of a few attoseconds. Within the past decade, attosecond pump–probe spectroscopy has emerged as a powerful experimental technique that permits electron dynamics to be followed on their natural timescales. With the development of this technology, physical chemists have been able to observe and control molecular dynamics on attosecond timescales. From these observations it has been suggested that attosecond to few-femtosecond timescale charge migration may induce what has been called “post-Born-Oppenheimer dynamics”, where the nuclei respond to rapidly time-dependent force fields resulting from transient localization of the electrons. These real-time observations have spurred exciting new advances in the theoretical work to both explain and predict these novel dynamics. This book presents an overview of current theoretical work relevant to attosecond science written by theoreticians who are presently at the forefront of its development. It is a valuable reference work for anyone working in the field of attosecond science as well as those studying the subject.