Tree-based Machine Learning Algorithms

Tree-based Machine Learning Algorithms

Author: Clinton Sheppard

Publisher: Createspace Independent Publishing Platform

Published: 2017-09-09

Total Pages: 152

ISBN-13: 9781975860974

DOWNLOAD EBOOK

"Learn how to use decision trees and random forests for classification and regression, their respective limitations, and how the algorithms that build them work. Each chapter introduces a new data concern and then walks you through modifying the code, thus building the engine just-in-time. Along the way you will gain experience making decision trees and random forests work for you."--Back cover.


Computational Electromagnetism

Computational Electromagnetism

Author: Alain Bossavit

Publisher: Academic Press

Published: 1998-02-04

Total Pages: 375

ISBN-13: 0080529666

DOWNLOAD EBOOK

Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.


Algorithms on Strings, Trees, and Sequences

Algorithms on Strings, Trees, and Sequences

Author: Dan Gusfield

Publisher: Cambridge University Press

Published: 1997-05-28

Total Pages: 556

ISBN-13: 1139811002

DOWNLOAD EBOOK

String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals.


The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems

Author: Ozgur Ergul

Publisher: John Wiley & Sons

Published: 2014-04-22

Total Pages: 484

ISBN-13: 1118844912

DOWNLOAD EBOOK

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.


MATLAB-based Finite Element Programming in Electromagnetic Modeling

MATLAB-based Finite Element Programming in Electromagnetic Modeling

Author: Özlem Özgün

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 428

ISBN-13: 0429854609

DOWNLOAD EBOOK

This book is a self-contained, programming-oriented and learner-centered book on finite element method (FEM), with special emphasis given to developing MATLAB® programs for numerical modeling of electromagnetic boundary value problems. It provides a deep understanding and intuition of FEM programming by means of step-by-step MATLAB® programs with detailed descriptions, and eventually enabling the readers to modify, adapt and apply the provided programs and formulations to develop FEM codes for similar problems through various exercises. It starts with simple one-dimensional static and time-harmonic problems and extends the developed theory to more complex two- or three-dimensional problems. It supplies sufficient theoretical background on the topic, and it thoroughly covers all phases (pre-processing, main body and post-processing) in FEM. FEM formulations are obtained for boundary value problems governed by a partial differential equation that is expressed in terms of a generic unknown function, and then, these formulations are specialized to various electromagnetic applications together with a post-processing phase. Since the method is mostly described in a general context, readers from other disciplines can also use this book and easily adapt the provided codes to their engineering problems. After forming a solid background on the fundamentals of FEM by means of canonical problems, readers are guided to more advanced applications of FEM in electromagnetics through a survey chapter at the end of the book. Offers a self-contained and easy-to-understand introduction to the theory and programming of finite element method. Covers various applications in the field of static and time-harmonic electromagnetics. Includes one-, two- and three-dimensional finite element codes in MATLAB®. Enables readers to develop finite element programming skills through various MATLAB® codes and exercises. Promotes self-directed learning skills and provides an effective instruction tool.


Topology Optimization and AI-based Design of Power Electronic and Electrical Devices

Topology Optimization and AI-based Design of Power Electronic and Electrical Devices

Author: Hajime Igarashi

Publisher: Elsevier

Published: 2024-02-01

Total Pages: 384

ISBN-13: 0323996752

DOWNLOAD EBOOK

Topology Optimization and AI-based Design of Power Electronic and Electrical Devices: Principles and Methods provides an essential foundation in the emergent design methodology as it moves towards commercial development in such electrical devices as traction motors for electric motors, transformers, inductors, reactors and power electronics circuits. Opening with an introduction to electromagnetism and computational electromagnetics for optimal design, the work outlines principles and foundations in finite element methods and illustrates numerical techniques useful for finite element analysis. It summarizes the foundations of deterministic and stochastic optimization methods, including genetic algorithm, particle swarm optimization and simulated annealing, alongside representative algorithms. The work goes on to discuss parameter optimization and topology optimization of electrical devices alongside current implementations including magnetic shields, 2D and 3D models of electric motors, and wireless power transfer devices. The work concludes with a lengthy exposition of AI-based design methods, including surrogate models for optimization, deep neural networks, and automatic design methods using Monte-Carlo tree searches for electrical devices and circuits. Assists researchers and design engineers in applying emergent topology design optimization to power electronics and electrical device design, supported by step-by-step methods, heuristic derivation, and pseudocodes Proposes unique formulations of AI-based design for electrical devices using Monte Carlo tree search and other machine learning methods Is richly accompanied by detailed numerical examples and repletes with computational support materials in algorithms and explanatory formulae Includes access to pedagogical videos on topics including the evolutionary process of topology optimization, the distribution of genetic algorithms, and CMA-ES


Particle-Based Methods

Particle-Based Methods

Author: Eugenio Oñate

Publisher: Springer Science & Business Media

Published: 2011-02-17

Total Pages: 275

ISBN-13: 9400707355

DOWNLOAD EBOOK

The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.