Novel Methods for Solving Linear and Nonlinear Integral Equations

Novel Methods for Solving Linear and Nonlinear Integral Equations

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 242

ISBN-13: 0429777388

DOWNLOAD EBOOK

This book deals with the numerical solution of integral equations based on approximation of functions and the authors apply wavelet approximation to the unknown function of integral equations. The book's goal is to categorize the selected methods and assess their accuracy and efficiency.


Linear and Nonlinear Integral Equations

Linear and Nonlinear Integral Equations

Author: Abdul-Majid Wazwaz

Publisher: Springer Science & Business Media

Published: 2011-11-24

Total Pages: 639

ISBN-13: 3642214495

DOWNLOAD EBOOK

Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.


Novel Methods for Solving Linear and Nonlinear Integral Equations

Novel Methods for Solving Linear and Nonlinear Integral Equations

Author: Santanu Saha Ray

Publisher: CRC Press

Published: 2018-12-07

Total Pages: 301

ISBN-13: 042977737X

DOWNLOAD EBOOK

This book deals with the numerical solution of integral equations based on approximation of functions and the authors apply wavelet approximation to the unknown function of integral equations. The book's goal is to categorize the selected methods and assess their accuracy and efficiency.


Methods in Nonlinear Integral Equations

Methods in Nonlinear Integral Equations

Author: R Precup

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 221

ISBN-13: 9401599866

DOWNLOAD EBOOK

Methods in Nonlinear Integral Equations presents several extremely fruitful methods for the analysis of systems and nonlinear integral equations. They include: fixed point methods (the Schauder and Leray-Schauder principles), variational methods (direct variational methods and mountain pass theorems), and iterative methods (the discrete continuation principle, upper and lower solutions techniques, Newton's method and the generalized quasilinearization method). Many important applications for several classes of integral equations and, in particular, for initial and boundary value problems, are presented to complement the theory. Special attention is paid to the existence and localization of solutions in bounded domains such as balls and order intervals. The presentation is essentially self-contained and leads the reader from classical concepts to current ideas and methods of nonlinear analysis.


Handbook of Integral Equations

Handbook of Integral Equations

Author: Andrei D. Polyanin

Publisher: CRC Press

Published: 2008-02-12

Total Pages: 1143

ISBN-13: 0203881052

DOWNLOAD EBOOK

Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa


Iterative Methods for Solving Nonlinear Equations and Systems

Iterative Methods for Solving Nonlinear Equations and Systems

Author: Juan R. Torregrosa

Publisher: MDPI

Published: 2019-12-06

Total Pages: 494

ISBN-13: 3039219405

DOWNLOAD EBOOK

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.


Integral Equations

Integral Equations

Author: F. G. Tricomi

Publisher: Courier Corporation

Published: 2012-04-27

Total Pages: 256

ISBN-13: 0486158306

DOWNLOAD EBOOK

Authoritative, well-written treatment of extremely useful mathematical tool with wide applications. Topics include Volterra Equations, Fredholm Equations, Symmetric Kernels and Orthogonal Systems of Functions, more. Advanced undergraduate to graduate level. Exercises. Bibliography.


Integral Equations

Integral Equations

Author: B. L. Moiseiwitsch

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 181

ISBN-13: 048615212X

DOWNLOAD EBOOK

This text begins with simple examples of a variety of integral equations and the methods of their solution, and progresses to become gradually more abstract and encompass discussions of Hilbert space. 1977 edition.


Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Integral Equations: A Practical Treatment, from Spectral Theory to Applications

Author: David Porter

Publisher: Cambridge University Press

Published: 1990-09-28

Total Pages: 388

ISBN-13: 9780521337427

DOWNLOAD EBOOK

This book gives a rigorous and practical treatment of integral equations. These are significant because they occur in many problems in mathematics, physics and engineering and they offer a powerful (sometimes the only) technique for solving these problems. The book aims to tackle the solution of integral equations using a blend of abstract 'structural' results and more direct, down-to-earth mathematics. The interplay between these two approaches is a central feature of the text and it allows a thorough account to be given of many of the types of integral equation which arise in application areas. Since it is not always possible to find explicit solutions of the problems posed, much attention is devoted to obtaining qualitative information and approximations to the solutions, with the associated error estimates. This treatment is intended for final year mathematics undergraduates, postgraduates and research workers in application areas such as numerical analysis and fluid mechanics.