Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Nonstandard Methods in Stochastic Analysis and Mathematical Physics

Author: Sergio Albeverio

Publisher: Courier Dover Publications

Published: 2009-02-26

Total Pages: 529

ISBN-13: 0486468992

DOWNLOAD EBOOK

Two-part treatment begins with a self-contained introduction to the subject, followed by applications to stochastic analysis and mathematical physics. "A welcome addition." — Bulletin of the American Mathematical Society. 1986 edition.


Nonstandard Methods in Functional Analysis

Nonstandard Methods in Functional Analysis

Author: Siu-Ah Ng

Publisher: World Scientific

Published: 2010

Total Pages: 339

ISBN-13: 9814287555

DOWNLOAD EBOOK

In the early 1960s, by using techniques from the model theory of first-order logic, Robinson gave a rigorous formulation and extension of Leibniz'' infinitesimal calculus. Since then, the methodology has found applications in a wide spectrum of areas in mathematics, with particular success in the probability theory and functional analysis. In the latter, fruitful results were produced with Luxemburg''s invention of the nonstandard hull construction. However, there is still no publication of a coherent and self-contained treatment of functional analysis using methods from nonstandard analysis. This publication aims to fill this gap.


Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Nonstandard Methods in Ramsey Theory and Combinatorial Number Theory

Author: Mauro Di Nasso

Publisher: Springer

Published: 2019-05-23

Total Pages: 211

ISBN-13: 3030179567

DOWNLOAD EBOOK

The goal of this monograph is to give an accessible introduction to nonstandard methods and their applications, with an emphasis on combinatorics and Ramsey theory. It includes both new nonstandard proofs of classical results and recent developments initially obtained in the nonstandard setting. This makes it the first combinatorics-focused account of nonstandard methods to be aimed at a general (graduate-level) mathematical audience. This book will provide a natural starting point for researchers interested in approaching the rapidly growing literature on combinatorial results obtained via nonstandard methods. The primary audience consists of graduate students and specialists in logic and combinatorics who wish to pursue research at the interface between these areas.


Radically Elementary Probability Theory

Radically Elementary Probability Theory

Author: Edward Nelson

Publisher: Princeton University Press

Published: 1987

Total Pages: 112

ISBN-13: 9780691084749

DOWNLOAD EBOOK

Using only the very elementary framework of finite probability spaces, this book treats a number of topics in the modern theory of stochastic processes. This is made possible by using a small amount of Abraham Robinson's nonstandard analysis and not attempting to convert the results into conventional form.


Nonstandard Analysis for the Working Mathematician

Nonstandard Analysis for the Working Mathematician

Author: Peter A. Loeb

Publisher: Springer

Published: 2015-08-26

Total Pages: 485

ISBN-13: 9401773270

DOWNLOAD EBOOK

Starting with a simple formulation accessible to all mathematicians, this second edition is designed to provide a thorough introduction to nonstandard analysis. Nonstandard analysis is now a well-developed, powerful instrument for solving open problems in almost all disciplines of mathematics; it is often used as a ‘secret weapon’ by those who know the technique. This book illuminates the subject with some of the most striking applications in analysis, topology, functional analysis, probability and stochastic analysis, as well as applications in economics and combinatorial number theory. The first chapter is designed to facilitate the beginner in learning this technique by starting with calculus and basic real analysis. The second chapter provides the reader with the most important tools of nonstandard analysis: the transfer principle, Keisler’s internal definition principle, the spill-over principle, and saturation. The remaining chapters of the book study different fields for applications; each begins with a gentle introduction before then exploring solutions to open problems. All chapters within this second edition have been reworked and updated, with several completely new chapters on compactifications and number theory. Nonstandard Analysis for the Working Mathematician will be accessible to both experts and non-experts, and will ultimately provide many new and helpful insights into the enterprise of mathematics.


Nonstandard Methods in Fixed Point Theory

Nonstandard Methods in Fixed Point Theory

Author: Asuman G. Aksoy

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 149

ISBN-13: 1461234441

DOWNLOAD EBOOK

A unified account of the major new developments inspired by Maurey's application of Banach space ultraproducts to the fixed point theory for non-expansive mappings is given in this text. The first third of the book is devoted to laying a careful foundation for the actual fixed point theoretic results which follow. Set theoretic and Banach space ultraproducts constructions are studied in detail in the second part of the book, while the remainder of the book gives an introduction to the classical fixed point theory in addition to a discussion of normal structure. This is the first book which studies classical fixed point theory for non-expansive maps in the view of non-standard methods.


Nonstandard Analysis

Nonstandard Analysis

Author: Leif O. Arkeryd

Publisher: Springer Science & Business Media

Published: 1997-04-30

Total Pages: 392

ISBN-13: 9780792345862

DOWNLOAD EBOOK

1 More than thirty years after its discovery by Abraham Robinson , the ideas and techniques of Nonstandard Analysis (NSA) are being applied across the whole mathematical spectrum,as well as constituting an im portant field of research in their own right. The current methods of NSA now greatly extend Robinson's original work with infinitesimals. However, while the range of applications is broad, certain fundamental themes re cur. The nonstandard framework allows many informal ideas (that could loosely be described as idealisation) to be made precise and tractable. For example, the real line can (in this framework) be treated simultaneously as both a continuum and a discrete set of points; and a similar dual ap proach can be used to link the notions infinite and finite, rough and smooth. This has provided some powerful tools for the research mathematician - for example Loeb measure spaces in stochastic analysis and its applications, and nonstandard hulls in Banach spaces. The achievements of NSA can be summarised under the headings (i) explanation - giving fresh insight or new approaches to established theories; (ii) discovery - leading to new results in many fields; (iii) invention - providing new, rich structures that are useful in modelling and representation, as well as being of interest in their own right. The aim of the present volume is to make the power and range of appli cability of NSA more widely known and available to research mathemati cians.


Nonstandard Analysis and Its Applications

Nonstandard Analysis and Its Applications

Author: Nigel Cutland

Publisher: Cambridge University Press

Published: 1988-09-30

Total Pages: 365

ISBN-13: 052135109X

DOWNLOAD EBOOK

This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject.


Non-standard Analysis

Non-standard Analysis

Author: Abraham Robinson

Publisher: Princeton University Press

Published: 2016-08-11

Total Pages: 315

ISBN-13: 1400884225

DOWNLOAD EBOOK

Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested in non-standard analysis. It treats in rich detail many areas of application, including topology, functions of a real variable, functions of a complex variable, and normed linear spaces, together with problems of boundary layer flow of viscous fluids and rederivations of Saint-Venant's hypothesis concerning the distribution of stresses in an elastic body.


Nonstandard Analysis

Nonstandard Analysis

Author: Martin Väth

Publisher: Springer Science & Business Media

Published: 2007

Total Pages: 255

ISBN-13: 3764377739

DOWNLOAD EBOOK

This book introduces Robinson's nonstandard analysis, an application of model theory in analysis. Unlike some texts, it does not attempt to teach elementary calculus on the basis of nonstandard analysis, but points to some applications in more advanced analysis. The contents proceed from a discussion of the preliminaries to Nonstandard Models; Nonstandard Real Analysis; Enlargements and Saturated Models; Functionals, Generalized Limits, and Additive Measures; and finally Nonstandard Topology and Functional Analysis. No background in model theory is required, although some familiarity with analysis, topology, or functional analysis is useful. This self-contained book can be understood after a basic calculus course.