Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Author: Xuefeng Zhou

Publisher: Springer Nature

Published: 2020-01-01

Total Pages: 149

ISBN-13: 9811562636

DOWNLOAD EBOOK

This open access book focuses on robot introspection, which has a direct impact on physical human-robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.


Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Nonparametric Bayesian Learning for Collaborative Robot Multimodal Introspection

Author: Xuefeng Zhou

Publisher: Springer

Published: 2020-09-18

Total Pages: 137

ISBN-13: 9789811562655

DOWNLOAD EBOOK

This open access book focuses on robot introspection, which has a direct impact on physical human–robot interaction and long-term autonomy, and which can benefit from autonomous anomaly monitoring and diagnosis, as well as anomaly recovery strategies. In robotics, the ability to reason, solve their own anomalies and proactively enrich owned knowledge is a direct way to improve autonomous behaviors. To this end, the authors start by considering the underlying pattern of multimodal observation during robot manipulation, which can effectively be modeled as a parametric hidden Markov model (HMM). They then adopt a nonparametric Bayesian approach in defining a prior using the hierarchical Dirichlet process (HDP) on the standard HMM parameters, known as the Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM). The HDP-HMM can examine an HMM with an unbounded number of possible states and allows flexibility in the complexity of the learned model and the development of reliable and scalable variational inference methods. This book is a valuable reference resource for researchers and designers in the field of robot learning and multimodal perception, as well as for senior undergraduate and graduate university students.


Bayesian Nonparametrics

Bayesian Nonparametrics

Author: Nils Lid Hjort

Publisher: Cambridge University Press

Published: 2010-04-12

Total Pages: 309

ISBN-13: 1139484605

DOWNLOAD EBOOK

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.


Reinforcement Learning, second edition

Reinforcement Learning, second edition

Author: Richard S. Sutton

Publisher: MIT Press

Published: 2018-11-13

Total Pages: 549

ISBN-13: 0262352702

DOWNLOAD EBOOK

The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.


Robot Learning from Human Demonstration

Robot Learning from Human Demonstration

Author: Sonia Dechter

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 109

ISBN-13: 3031015703

DOWNLOAD EBOOK

Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminology seen in the literature as well as an outline of the design choices one has in designing an LfD system. Chapter 2 gives a brief survey of the psychology literature that provides insights from human social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstrations. Next, is the choice of modeling technique. Currently, there is a dichotomy in the field between approaches that model low-level motor skills and those that model high-level tasks composed of primitive actions. We devote a chapter to each of these. Chapter 7 is devoted to interactive and active learning approaches that allow the robot to refine an existing task model. And finally, Chapter 8 provides best practices for evaluation of LfD systems, with a focus on how to approach experiments with human subjects in this domain.


Encyclopedia of Information Science and Technology

Encyclopedia of Information Science and Technology

Author: Mehdi Khosrow-Pour

Publisher: IGI Global Snippet

Published: 2009

Total Pages: 4292

ISBN-13: 9781605660264

DOWNLOAD EBOOK

"This set of books represents a detailed compendium of authoritative, research-based entries that define the contemporary state of knowledge on technology"--Provided by publisher.


Logistics 4.0

Logistics 4.0

Author: Turan Paksoy

Publisher: CRC Press

Published: 2020-12-17

Total Pages: 369

ISBN-13: 1000245101

DOWNLOAD EBOOK

Industrial revolutions have impacted both, manufacturing and service. From the steam engine to digital automated production, the industrial revolutions have conduced significant changes in operations and supply chain management (SCM) processes. Swift changes in manufacturing and service systems have led to phenomenal improvements in productivity. The fast-paced environment brings new challenges and opportunities for the companies that are associated with the adaptation to the new concepts such as Internet of Things (IoT) and Cyber Physical Systems, artificial intelligence (AI), robotics, cyber security, data analytics, block chain and cloud technology. These emerging technologies facilitated and expedited the birth of Logistics 4.0. Industrial Revolution 4.0 initiatives in SCM has attracted stakeholders’ attentions due to it is ability to empower using a set of technologies together that helps to execute more efficient production and distribution systems. This initiative has been called Logistics 4.0 of the fourth Industrial Revolution in SCM due to its high potential. Connecting entities, machines, physical items and enterprise resources to each other by using sensors, devices and the internet along the supply chains are the main attributes of Logistics 4.0. IoT enables customers to make more suitable and valuable decisions due to the data-driven structure of the Industry 4.0 paradigm. Besides that, the system’s ability of gathering and analyzing information about the environment at any given time and adapting itself to the rapid changes add significant value to the SCM processes. In this peer-reviewed book, experts from all over the world, in the field present a conceptual framework for Logistics 4.0 and provide examples for usage of Industry 4.0 tools in SCM. This book is a work that will be beneficial for both practitioners and students and academicians, as it covers the theoretical framework, on the one hand, and includes examples of practice and real world.


Introduction to Information Retrieval

Introduction to Information Retrieval

Author: Christopher D. Manning

Publisher: Cambridge University Press

Published: 2008-07-07

Total Pages:

ISBN-13: 1139472100

DOWNLOAD EBOOK

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.


Model Selection and Multimodel Inference

Model Selection and Multimodel Inference

Author: Kenneth P. Burnham

Publisher: Springer Science & Business Media

Published: 2007-05-28

Total Pages: 512

ISBN-13: 0387224564

DOWNLOAD EBOOK

A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.


Essentials of Metaheuristics (Second Edition)

Essentials of Metaheuristics (Second Edition)

Author: Sean Luke

Publisher:

Published: 2012-12-20

Total Pages: 242

ISBN-13: 9781300549628

DOWNLOAD EBOOK

Interested in the Genetic Algorithm? Simulated Annealing? Ant Colony Optimization? Essentials of Metaheuristics covers these and other metaheuristics algorithms, and is intended for undergraduate students, programmers, and non-experts. The book covers a wide range of algorithms, representations, selection and modification operators, and related topics, and includes 71 figures and 135 algorithms great and small. Algorithms include: Gradient Ascent techniques, Hill-Climbing variants, Simulated Annealing, Tabu Search variants, Iterated Local Search, Evolution Strategies, the Genetic Algorithm, the Steady-State Genetic Algorithm, Differential Evolution, Particle Swarm Optimization, Genetic Programming variants, One- and Two-Population Competitive Coevolution, N-Population Cooperative Coevolution, Implicit Fitness Sharing, Deterministic Crowding, NSGA-II, SPEA2, GRASP, Ant Colony Optimization variants, Guided Local Search, LEM, PBIL, UMDA, cGA, BOA, SAMUEL, ZCS, XCS, and XCSF.