Nonnegative Matrices in Dynamic Systems

Nonnegative Matrices in Dynamic Systems

Author: Abraham Berman

Publisher: Wiley-Interscience

Published: 1989

Total Pages: 200

ISBN-13:

DOWNLOAD EBOOK

This work applies the theory of nonnegative matrices to problems arising in positive differential and control systems. There is a concise review of requisite material in convex analysis and matrix theory, as well as a detailed review of linear differential and control systems. Exposition incorporates simple real-world dynamic models to better illustrate various aspects of the theory being developed. Contains exercises.


Nonnegative Matrices in Dynamic Systems

Nonnegative Matrices in Dynamic Systems

Author: Abraham Berman

Publisher: Wiley-Interscience

Published: 1989-10-31

Total Pages: 200

ISBN-13:

DOWNLOAD EBOOK

This work applies the theory of nonnegative matrices to problems arising in positive differential and control systems. There is a concise review of requisite material in convex analysis and matrix theory, as well as a detailed review of linear differential and control systems. Exposition incorporates simple real-world dynamic models to better illustrate various aspects of the theory being developed. Contains exercises.


Cooperative Control of Dynamical Systems

Cooperative Control of Dynamical Systems

Author: Zhihua Qu

Publisher: Springer Science & Business Media

Published: 2009-02-07

Total Pages: 335

ISBN-13: 1848823258

DOWNLOAD EBOOK

Stability theory has allowed us to study both qualitative and quantitative properties of dynamical systems, and control theory has played a key role in designing numerous systems. Contemporary sensing and communication n- works enable collection and subscription of geographically-distributed inf- mation and such information can be used to enhance signi?cantly the perf- manceofmanyofexisting systems. Throughasharedsensing/communication network,heterogeneoussystemscannowbecontrolledtooperaterobustlyand autonomously; cooperative control is to make the systems act as one group and exhibit certain cooperative behavior, and it must be pliable to physical and environmental constraints as well as be robust to intermittency, latency and changing patterns of the information ?ow in the network. This book attempts to provide a detailed coverage on the tools of and the results on analyzing and synthesizing cooperative systems. Dynamical systems under consideration can be either continuous-time or discrete-time, either linear or non-linear, and either unconstrained or constrained. Technical contents of the book are divided into three parts. The ?rst part consists of Chapters 1, 2, and 4. Chapter 1 provides an overview of coope- tive behaviors, kinematical and dynamical modeling approaches, and typical vehicle models. Chapter 2 contains a review of standard analysis and design tools in both linear control theory and non-linear control theory. Chapter 4 is a focused treatment of non-negativematrices and their properties,multipli- tive sequence convergence of non-negative and row-stochastic matrices, and the presence of these matrices and sequences in linear cooperative systems.


Nonnegative and Compartmental Dynamical Systems

Nonnegative and Compartmental Dynamical Systems

Author: Wassim M. Haddad

Publisher: Princeton University Press

Published: 2010-01-04

Total Pages: 624

ISBN-13: 1400832241

DOWNLOAD EBOOK

This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design. Nonnegative and Compartmental Dynamical Systems presents the most complete treatment available of system solution properties, Lyapunov stability analysis, dissipativity theory, and optimal and adaptive control for these systems, addressing continuous-time, discrete-time, and hybrid nonnegative system theory. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers, as well as for researchers and graduate students who want to understand the behavior of nonnegative and compartmental dynamical systems that arise in areas such as biomedicine, demographics, epidemiology, pharmacology, telecommunications, transportation, thermodynamics, networks, heat transfer, and power systems.


Nonnegative Matrices in the Mathematical Sciences

Nonnegative Matrices in the Mathematical Sciences

Author: Abraham Berman

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 337

ISBN-13: 1483260860

DOWNLOAD EBOOK

Nonnegative Matrices in the Mathematical Sciences provides information pertinent to the fundamental aspects of the theory of nonnegative matrices. This book describes selected applications of the theory to numerical analysis, probability, economics, and operations research. Organized into 10 chapters, this book begins with an overview of the properties of nonnegative matrices. This text then examines the inverse-positive matrices. Other chapters consider the basic approaches to the study of nonnegative matrices, namely, geometrical and combinatorial. This book discusses as well some useful ideas from the algebraic theory of semigroups and considers a canonical form for nonnegative idempotent matrices and special types of idempotent matrices. The final chapter deals with the linear complementary problem (LCP). This book is a valuable resource for mathematical economists, mathematical programmers, statisticians, mathematicians, and computer scientists.


Control of Uncertain Dynamic Systems

Control of Uncertain Dynamic Systems

Author: Shankar P. Bhattacharyya

Publisher: CRC Press

Published: 2020-09-23

Total Pages: 535

ISBN-13: 1000102564

DOWNLOAD EBOOK

This book is a collection of 34 papers presented by leading researchers at the International Workshop on Robust Control held in San Antonio, Texas in March 1991. The common theme tying these papers together is the analysis, synthesis, and design of control systems subject to various uncertainties. The papers describe the latest results in parametric understanding, H8 uncertainty, l1 optical control, and Quantitative Feedback Theory (QFT). The book is the first to bring together all the diverse points of view addressing the robust control problem and should strongly influence development in the robust control field for years to come. For this reason, control theorists, engineers, and applied mathematicians should consider it a crucial acquisition for their libraries.


Analysis and Synthesis of Dynamic Systems with Positive Characteristics

Analysis and Synthesis of Dynamic Systems with Positive Characteristics

Author: Jun Shen

Publisher: Springer

Published: 2017-03-27

Total Pages: 136

ISBN-13: 9811038805

DOWNLOAD EBOOK

This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots.


Extremes and Recurrence in Dynamical Systems

Extremes and Recurrence in Dynamical Systems

Author: Valerio Lucarini

Publisher: John Wiley & Sons

Published: 2016-03-28

Total Pages: 367

ISBN-13: 1118632354

DOWNLOAD EBOOK

Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.


Positive Dynamical Systems in Discrete Time

Positive Dynamical Systems in Discrete Time

Author: Ulrich Krause

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2015-11-27

Total Pages: 429

ISBN-13: 3110391341

DOWNLOAD EBOOK

This book provides a systematic, rigorous and self-contained treatment of positive dynamical systems. A dynamical system is positive when all relevant variables of a system are nonnegative in a natural way. This is in biology, demography or economics, where the levels of populations or prices of goods are positive. The principle also finds application in electrical engineering, physics and computer sciences. "The author has greatly expanded the field of positive systems in surprising ways." - Prof. Dr. David G. Luenberger, Stanford University(USA)