The aim of the School on Rheology of Complex fluids is to bring together young researchers and teachers from educational and R&D institutions, and expose them to the basic concepts and research techniques used in the study of rheological behavior of complex fluids. The lectures will be delivered by well-recognized experts. The book contents will be based on the lecture notes of the school.
As the complexity of the food supply system increases, the focus on processes used to convert raw food materials and ingredients into consumer food products becomes more important. The Handbook of Food Engineering, Third Edition, continues to provide students and food engineering professionals with the latest information needed to improve the efficiency of the food supply system. As with the previous editions, this book contains the latest information on the thermophysical properties of foods and kinetic constants needed to estimate changes in key components of foods during manufacturing and distribution. Illustrations are used to demonstrate the applications of the information to process design. Researchers should be able to use the information to pursue new directions in process development and design, and to identify future directions for research on the physical properties of foods and kinetics of changes in the food throughout the supply system. Features Covers basic concepts of transport and storage of liquids and solids, heating and cooling of foods, and food ingredients New chapter covers nanoscale science in food systems Includes chapters on mass transfer in foods and membrane processes for liquid concentration and other applications Discusses specific unit operations on freezing, concentration, dehydration, thermal processing, and extrusion The first four chapters of the Third Edition focus primarily on the properties of foods and food ingredients with a new chapter on nanoscale applications in foods. Each of the eleven chapters that follow has a focus on one of the more traditional unit operations used throughout the food supply system. Major revisions and/or updates have been incorporated into chapters on heating and cooling processes, membrane processes, extrusion processes, and cleaning operations.
This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.
This book presents a compilation of self-contained chapters covering a wide range of topics within the broad field of soft condensed matter. Each chapter starts with basic definitions to bring the reader up-to-date on the topic at hand, describing how to use fluid flows to generate soft materials of high value either for applications or for basic research. Coverage includes topics related to colloidal suspensions and soft materials and how they differ in behavior, along with a roadmap for researchers on how to use soft materials to study relevant physics questions related to geometrical frustration.
Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications focuses on rheology in polymer nanocomposites. It provides readers with a solid grounding in the fundamentals of rheology, with an emphasis on recent advancements. Chapters explore potential future applications for nanocomposites and polymer blends, giving readers a thorough understanding of the specific features derived from rheology as a tool for the study of polymer blends and nanocomposites. This book is ideal for industrial and academic researchers in the field of polymer blends and nanocomposites, but is also a great resource for anyone who wants to learn about the applications of rheology. - Sets out the principles of rheology as it is applied to polymer blends and nanocomposites - Demonstrates how rheological techniques are best applied to different classes of nanocomposites - Assesses the opportunities and major challenges of rheological approaches to polymer blends and nanocomposites
This book introduces fundamentals, measurements, and applications of rheology of fresh cement-based materials. The rheology of a fresh cement-based material is one of its most important aspects, characterizing its flow and deformation, and governing the mixing, placement, and casting quality of a concrete. This is the first book to bring the field together on an increasingly important topic, as new types of cement-based materials and new concrete technologies are developed. It describes measurement equipment, procedures, and data interpretation of the rheology of cement paste and concrete, as well as applications such as self-compacting concrete, pumping, and 3D printing. A range of other cement-based materials such as fiber-reinforced concrete, cemented paste backfills, and alkali-activated cement are also examined. Rheology of Fresh Cement-Based Materials serves as a reference book for researchers and engineers, and a textbook for advanced undergraduate and graduate students.
Rheology of Semisolid Foods comprehensively covers the rheological behaviors and rheological testing of semisolid foods. Individual chapters focus on semisolid food structure, rheological and sensory behaviors, testing of various semisolid food behaviors, and factors that impact those behaviors. Special concentration is given to the relationships among semisolid food structures and mechanical properties and textures. The second section of this work presents a series of case studies on acid milk gels and yogurt which provide a practical illustration of the concepts presented in the preceding chapters, allowing readers to gain both conceptual knowledge of semisolid food rheology and an understanding of how that knowledge can be applied to a food system of choice. Individual components, processing parameters, and storage conditions can dramatically impact food functional properties and textures. Changing any of these factors can cause significant microstructural alterations resulting in undesirable changes in product stability, functionality and texture. The lack of knowledge of how these factors impact the final food properties makes development of new food products a process of empirical trial rather than intentional design. A fundamental understanding food structure, function and texture relationships is critical for targeted design of food products. This text is a valuable reference for researchers looking to gain an understanding of how rheology works in semisolid food design and processing.
This book gives a brief but thorough introduction to the fascinating subject of non-Newtonian fluids, their behavior and mechanical properties. After a brief introduction of what characterizes non-Newtonian fluids in Chapter 1 some phenomena characteristic of non-Newtonian fluids are presented in Chapter 2. The basic equations in fluid mechanics are discussed in Chapter 3. Deformation kinematics, the kinematics of shear flows, viscometric flows, and extensional flows are the topics in Chapter 4. Material functions characterizing the behavior of fluids in special flows are defined in Chapter 5. Generalized Newtonian fluids are the most common types of non-Newtonian fluids and are the subject in Chapter 6. Some linearly viscoelastic fluid models are presented in Chapter 7. In Chapter 8 the concept of tensors is utilized and advanced fluid models are introduced. The book is concluded with a variety of 26 problems. Solutions to the problems are ready for instructors
Dispersionen sind ein heterogenes Gemisch aus zwei Stoffen, die sich nicht miteinander mischen. In der vorliegenden Arbeit werden sowohl Suspensionen bestehend aus einer festen dispersen Phase in einem flussigen Dispersionsmedium, Emulsionen bestehen aus zwei nicht mischbaren Flussigkeiten als auch Schaume, gebildet aus einer Gasphase dispergiert in einer Flussigkeit, untersucht. Als Hauptcharakterisierungsmethode dient die Fourier Transformations-Rheologie (FT-Rheologie), welches eine mechanische Charakterisierungsmethode im nichtlinearen Bereich darstellt.