Nonlinear Models in Medical Statistics

Nonlinear Models in Medical Statistics

Author: James K. Lindsey

Publisher:

Published: 2001

Total Pages: 298

ISBN-13: 9780198508120

DOWNLOAD EBOOK

This text provides an introduction to the use of nonlinear models in medical statistics. It is a practical text rather than a theoretical one and assumes a basic knowledge of statistical modelling and of generalized linear models. It begins with a general introduction to nonlinear models, comparing them to generalized linear models, descriptions of data handling and formula definition and a summary of the principal types of nonlinear regression formulae. There is an emphasis on techniques for non-normal data. Following chapters provide detailed examples of applications in various areas of medicine, epidemiology, clinical trials, quality of life, pharmokinetics, pharmacodynamics, assays and formulations, and moleuclar genetics.


Fitting Models to Biological Data Using Linear and Nonlinear Regression

Fitting Models to Biological Data Using Linear and Nonlinear Regression

Author: Harvey Motulsky

Publisher: Oxford University Press

Published: 2004-05-27

Total Pages: 352

ISBN-13: 9780198038344

DOWNLOAD EBOOK

Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.


Statistical Tools for Nonlinear Regression

Statistical Tools for Nonlinear Regression

Author: Sylvie Huet

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 161

ISBN-13: 147572523X

DOWNLOAD EBOOK

Statistical Tools for Nonlinear Regression presents methods for analyzing data. It has been expanded to include binomial, multinomial and Poisson non-linear models. The examples are analyzed with the free software nls2 updated to deal with the new models included in the second edition. The nls2 package is implemented in S-PLUS and R. Several additional tools are included in the package for calculating confidence regions for functions of parameters or calibration intervals, using classical methodology or bootstrap.


Nonlinear Models for Repeated Measurement Data

Nonlinear Models for Repeated Measurement Data

Author: Marie Davidian

Publisher: Routledge

Published: 2017-11-01

Total Pages: 360

ISBN-13: 1351428152

DOWNLOAD EBOOK

Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.


Regression Models as a Tool in Medical Research

Regression Models as a Tool in Medical Research

Author: Werner Vach

Publisher: CRC Press

Published: 2012-11-27

Total Pages: 497

ISBN-13: 1466517484

DOWNLOAD EBOOK

While regression models have become standard tools in medical research, understanding how to properly apply the models and interpret the results is often challenging for beginners. Regression Models as a Tool in Medical Research presents the fundamental concepts and important aspects of regression models most commonly used in medical research, including the classical regression model for continuous outcomes, the logistic regression model for binary outcomes, and the Cox proportional hazards model for survival data. The text emphasizes adequate use, correct interpretation of results, appropriate presentation of results, and avoidance of potential pitfalls. After reviewing popular models and basic methods, the book focuses on advanced topics and techniques. It considers the comparison of regression coefficients, the selection of covariates, the modeling of nonlinear and nonadditive effects, and the analysis of clustered and longitudinal data, highlighting the impact of selection mechanisms, measurement error, and incomplete covariate data. The text then covers the use of regression models to construct risk scores and predictors. It also gives an overview of more specific regression models and their applications as well as alternatives to regression modeling. The mathematical details underlying the estimation and inference techniques are provided in the appendices.


Linear and Nonlinear Models for the Analysis of Repeated Measurements

Linear and Nonlinear Models for the Analysis of Repeated Measurements

Author: Edward Vonesh

Publisher: CRC Press

Published: 1996-11-01

Total Pages: 590

ISBN-13: 9780824782481

DOWNLOAD EBOOK

Integrates the latest theory, methodology and applications related to the design and analysis of repeated measurement. The text covers a broad range of topics, including the analysis of repeated measures design, general crossover designs, and linear and nonlinear regression models. It also contains a 3.5 IBM compatible disk, with software to implement immediately the techniques.


Bayesian Methods for Nonlinear Classification and Regression

Bayesian Methods for Nonlinear Classification and Regression

Author: David G. T. Denison

Publisher: John Wiley & Sons

Published: 2002-05-06

Total Pages: 302

ISBN-13: 9780471490364

DOWNLOAD EBOOK

Bei der Regressionsanalyse von Datenmaterial erhält man leider selten lineare oder andere einfache Zusammenhänge (parametrische Modelle). Dieses Buch hilft Ihnen, auch komplexere, nichtparametrische Modelle zu verstehen und zu beherrschen. Stärken und Schwächen jedes einzelnen Modells werden durch die Anwendung auf Standarddatensätze demonstriert. Verbreitete nichtparametrische Modelle werden mit Hilfe von Bayes-Verfahren in einen kohärenten wahrscheinlichkeitstheoretischen Zusammenhang gebracht.


Nonlinear Regression with R

Nonlinear Regression with R

Author: Christian Ritz

Publisher: Springer Science & Business Media

Published: 2008-12-11

Total Pages: 151

ISBN-13: 0387096167

DOWNLOAD EBOOK

- Coherent and unified treatment of nonlinear regression with R. - Example-based approach. - Wide area of application.


Applied Linear Statistical Models

Applied Linear Statistical Models

Author: Michael H. Kutner

Publisher: McGraw-Hill/Irwin

Published: 2005

Total Pages: 1396

ISBN-13: 9780072386882

DOWNLOAD EBOOK

Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.


Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data

Author: Lang Wu

Publisher: CRC Press

Published: 2009-11-11

Total Pages: 431

ISBN-13: 9781420074086

DOWNLOAD EBOOK

Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.