Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

Author: F.H. Busse

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 552

ISBN-13: 1468457934

DOWNLOAD EBOOK

This volume contains papers contributed to the NATO Advanced Research Workshop "Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems" held in Streitberg, Fed. Rep. Germany, Sept. 24 through 30, 1989. The purpose of the rather long title has been to focus attention on a particularly fruitful direction of research within the broad field covered by terms like Nonlinear Dynamics or Non-Equilibrium Systems. After physicists have been occupied for several decades mainly with the microscopic structure of matter, recent years have witnessed a resurgence of interest in macroscopic patterns and dynamics. Research on these latter phenomena has not been dormant, of course, since fluid dynamicists interested in the origin of turbulence, meteorologists studying weather patterns and numerous other scientists have continued to advance the understanding of the structures relevant to their disciplines. The recent progress in the dynamics of nonl inear systems wi th few degrees of freedom and the discovery of universal laws such as the Feigenbaum scaling of period-doubling cascades has given rise to new hopes for the understanding of common principles underlying the spontaneous formation of structures in extended continuous systems.


Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems

Author: F.H. Busse

Publisher: Springer

Published: 2013-06-14

Total Pages: 569

ISBN-13: 9781468457940

DOWNLOAD EBOOK

This volume contains papers contributed to the NATO Advanced Research Workshop "Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems" held in Streitberg, Fed. Rep. Germany, Sept. 24 through 30, 1989. The purpose of the rather long title has been to focus attention on a particularly fruitful direction of research within the broad field covered by terms like Nonlinear Dynamics or Non-Equilibrium Systems. After physicists have been occupied for several decades mainly with the microscopic structure of matter, recent years have witnessed a resurgence of interest in macroscopic patterns and dynamics. Research on these latter phenomena has not been dormant, of course, since fluid dynamicists interested in the origin of turbulence, meteorologists studying weather patterns and numerous other scientists have continued to advance the understanding of the structures relevant to their disciplines. The recent progress in the dynamics of nonl inear systems wi th few degrees of freedom and the discovery of universal laws such as the Feigenbaum scaling of period-doubling cascades has given rise to new hopes for the understanding of common principles underlying the spontaneous formation of structures in extended continuous systems.


Evolution of Spontaneous Structures in Dissipative Continuous Systems

Evolution of Spontaneous Structures in Dissipative Continuous Systems

Author: Friedrich H. Busse

Publisher: Springer Science & Business Media

Published: 2003-07-01

Total Pages: 592

ISBN-13: 3540495371

DOWNLOAD EBOOK

In the decades the of the formation of structures past subject spontaneous in far from has into a branch of - systems equilibrium major physics grown search with ties to It has become evident that strong neighboring disciplines. a diverse of can be understood within a common mat- phenomena range matical framework which has been called nonlinear of continuous dynamics This name the close to the field of nonlinear systems. emphasizes relationship of with few of freedom which has evolved into a dynamics systems degrees mature in the recent features mathematically subject past. Many dynamical of continuous be described reduction few can a to a systems actually through of freedom and of the latter of continue to degrees properties type systems of continuous the inspire study systems. The of this book is to demonstrate the numerous goal through examples that exist for the of nonlinear the opportunities study phenomena through tools of mathematical and use of common analyses dynamical interpretations. Instead of overview of the a providing comprehensive rapidly evolving field, the contributors to this book are to communicate to a wide scientific trying audience the of what have learnt about the formation of essence they spon- neous structures in continuous and about the dissipative systems competition between order and chaos that characterizes these It is that systems. hoped the book will be even to those scientists whose not helpful are disciplines the authors.


Spatio-Temporal Pattern Formation

Spatio-Temporal Pattern Formation

Author: Daniel Walgraef

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 310

ISBN-13: 1461218500

DOWNLOAD EBOOK

Spatio-temporal patterns appear almost everywhere in nature, and their description and understanding still raise important and basic questions. However, if one looks back 20 or 30 years, definite progress has been made in the modeling of insta bilities, analysis of the dynamics in their vicinity, pattern formation and stability, quantitative experimental and numerical analysis of patterns, and so on. Universal behaviors of complex systems close to instabilities have been determined, leading to the wide interdisciplinarity of a field that is now referred to as nonlinear science or science of complexity, and in which initial concepts of dissipative structures or synergetics are deeply rooted. In pioneering domains related to hydrodynamics or chemical instabilities, the interactions between experimentalists and theoreticians, sometimes on a daily basis, have been a key to progress. Everyone in the field praises the role played by the interactions and permanent feedbacks between ex perimental, numerical, and analytical studies in the achievements obtained during these years. Many aspects of convective patterns in normal fluids, binary mixtures or liquid crystals are now understood and described in this framework. The generic pres ence of defects in extended systems is now well established and has induced new developments in the physics of laser with large Fresnel numbers. Last but not least, almost 40 years after his celebrated paper, Turing structures have finally been ob tained in real-life chemical reactors, triggering anew intense activity in the field of reaction-diffusion systems.


Nonlinear Structures in Physical Systems

Nonlinear Structures in Physical Systems

Author: Lui Lam

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 335

ISBN-13: 1461234409

DOWNLOAD EBOOK

Structures in Nature are ubiquitous and fascinating. In natural and mathematical systems nonlinear structures, roughly speaking, are those resulting from nonlinear equations, the investigation of which forms a large and integral part of the new branch of science-the nonlinear science. Like nonlinear science in general, non linear structures is a truly interdisciplinary subject which involves physicists, chemists, biologists, material scientists, mathematicians, engineers, etc. In view of the recent rapid developments in this subject and the existence of a converging picture which acts to unify some of the previously considered separate subfields of research, we think it is time to bring together various experts to exchange ideas and share their newest findings. The Second Woodward Confer ence afforded us a chance to do exactly this. Accordingly, this second conference in the series was devoted to the subject of Nonlinear Structures in Physical Sys tems: Pattern Formation, Chaos and Waves, and was held at San Jose State Uni versity on November 17-18, 1989.


Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability

Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability

Author: G Dangelmayr

Publisher: CRC Press

Published: 1996-08-01

Total Pages: 292

ISBN-13: 9780582229297

DOWNLOAD EBOOK

The mathematical description of complex spatiotemporal behaviour observed in dissipative continuous systems is a major challenge for modern research in applied mathematics. While the behaviour of low-dimensional systems, governed by the dynamics of a finite number of modes is well understood, systems with large or unbounded spatial domains show intrinsic infinite-dimensional behaviour --not a priori accessible to the methods of finite dimensionaldynamical systems. The purpose of the four contributions in this book is to present some recent and active lines of research in evolution equations posed in large or unbounded domains. One of the most prominent features of these systems is the propagation of various types of patterns in the form of waves, such as travelling and standing waves and pulses and fronts. Different approaches to studying these kinds of phenomena are discussed in the book. A major theme is the reduction of an original evolution equation in the form of a partial differential equation system to a simpler system of equations, either a system of ordinary differential equation or a canonical system of PDEs. The study of the reduced equations provides insight into the bifurcations from simple to more complicated solutions and their stabilities. .


Computational Fluid Dynamics with Moving Boundaries

Computational Fluid Dynamics with Moving Boundaries

Author: Wei Shyy

Publisher: Courier Corporation

Published: 2012-08-21

Total Pages: 306

ISBN-13: 0486135551

DOWNLOAD EBOOK

This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures include multiple examples that employ algorithms in problem-solving. In addition to its survey of contemporary numerical techniques, this volume discusses formulation and computation strategies as well as applications in many fields. Researchers and professionals in aerospace, chemical, mechanical, and materials engineering will find it a valuable resource. It is also an appropriate textbook for advanced courses in fluid dynamics, computation fluid dynamics, heat transfer, and numerical methods.


Pattern Formation in Continuous and Coupled Systems

Pattern Formation in Continuous and Coupled Systems

Author: Martin Golubitsky

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 324

ISBN-13: 1461215587

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature.


Pattern Formation In Complex Dissipative Systems: Fluid Patterns, Liquid Crystals, Chemical Reactions

Pattern Formation In Complex Dissipative Systems: Fluid Patterns, Liquid Crystals, Chemical Reactions

Author: S Kai

Publisher: World Scientific

Published: 1992-09-15

Total Pages: 596

ISBN-13: 9814555339

DOWNLOAD EBOOK

In this volume, the problems of pattern formation in physics, chemistry and other related fields in complex and nonlinear dissipative systems are studied. Main subjects discussed are formation mechanisms, properties, statistics, characterization and dynamics of periodic and nonperiodic patterns in the electrohydrodynamics in liquid crystals, Rayleigh-Benard convection, crystallization, viscous fingering and Belouzov-Zhabotinsky chemical reaction. Recent developments in topological and defect-mediated chaos, chaos in systems with large degrees of freedom and turbulence-turbulence transitions are also discussed.


Future Directions of Nonlinear Dynamics in Physical and Biological Systems

Future Directions of Nonlinear Dynamics in Physical and Biological Systems

Author: P.L. Christiansen

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 549

ISBN-13: 1489916091

DOWNLOAD EBOOK

Early in 1990 a scientific committee was formed for the purpose of organizing a high-level scientific meeting on Future Directions of Nonlinear Dynamics in Physical and Biological Systems, in honor of Alwyn Scott's 60th birthday (December 25, 1991). As preparations for the meeting proceeded, they were met with an unusually broad-scale and high level of enthusiasm on the part of the international nonlinear science community, resulting in a participation by 168 scientists from 23 different countries in the conference, which was held July 23 to August 11992 at the Laboratory of Applied Mathematical Physics and the Center for Modelling, Nonlinear Dynamics and Irreversible Thermodynamics (MIDIT) of the Technical University of Denmark. During the meeting about 50 lectures and 100 posters were presented in 9 working days. The contributions to this present volume have been grouped into the following chapters: 1. Integrability, Solitons, and Coherent Structures 2. Nonlinear Evolution Equations and Diffusive Systems 3. Chaotic and Stochastic Dynamics 4. Classical and Quantum Lattices and Fields 5. Superconductivity and Superconducting Devices 6. Nonlinear Optics 7. Davydov Solitons and Biomolecular Dynamics 8. Biological Systems and Neurophysics. AI Scott has made early and fundamental contributions to many of these different areas of nonlinear science. They form an important subset of the total number of the papers and posters presented at the meeting. Other papers from the meeting are being published in a special issue of Physica D Nonlinear Phenomena.