Biological Systems: Nonlinear Dynamics Approach

Biological Systems: Nonlinear Dynamics Approach

Author: Jorge Carballido-Landeira

Publisher: Springer

Published: 2019-04-29

Total Pages: 111

ISBN-13: 303016585X

DOWNLOAD EBOOK

This book collects recent advances in the field of nonlinear dynamics in biological systems. Focusing on medical applications as well as more fundamental questions in biochemistry, it presents recent findings in areas such as control in chemically driven reaction-diffusion systems, electrical wave propagation through heart tissue, neural network growth, chiral symmetry breaking in polymers and mechanochemical pattern formation in the cytoplasm, particularly in the context of cardiac cells. It is a compilation of works, including contributions from international scientists who attended the “2nd BCAM Workshop on Nonlinear Dynamics in Biological Systems,” held at the Basque Center for Applied Mathematics, Bilbao in September 2016. Embracing diverse disciplines and using multidisciplinary approaches – including theoretical concepts, simulations and experiments – these contributions highlight the nonlinear nature of biological systems in order to be able to reproduce their complex behavior. Edited by the conference organizers and featuring results that represent recent findings and not necessarily those presented at the conference, the book appeals to applied mathematicians, biophysicists and computational biologists.


Self-Organized Biological Dynamics and Nonlinear Control

Self-Organized Biological Dynamics and Nonlinear Control

Author: Jan Walleczek

Publisher: Cambridge University Press

Published: 2006-04-20

Total Pages: 444

ISBN-13: 1139427598

DOWNLOAD EBOOK

The growing impact of nonlinear science on biology and medicine is fundamentally changing our view of living organisms and disease processes. This book introduces the application to biomedicine of a broad range of interdisciplinary concepts from nonlinear dynamics, such as self-organization, complexity, coherence, stochastic resonance, fractals and chaos. It comprises 18 chapters written by leading figures in the field and covers experimental and theoretical research, as well as the emerging technological possibilities such as nonlinear control techniques for treating pathological biodynamics, including heart arrhythmias and epilepsy. This book will attract the interest of professionals and students from a wide range of disciplines, including physicists, chemists, biologists, sensory physiologists and medical researchers such as cardiologists, neurologists and biomedical engineers.


Nonlinear Electrodynamics in Biological Systems

Nonlinear Electrodynamics in Biological Systems

Author: W. Adey

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 589

ISBN-13: 146132789X

DOWNLOAD EBOOK

The past half century has seen an extraordinary growth in the fields of cellular and molecular biology. From simple morphologi cal concepts of cells as the essential units of living matter there has been an ever-sharper focus on functional organization of living systems, with emphasis on molecular dynamics. Thus, life forms have come to be defined increasingly in terms of metabolism, growth, reproduction and responses to environmental perturbations. Since these properties occur in varying degrees in systems below the level of cellular organization, there has been a blurring of older models that restricted the concepts of life to cellular systems. At the same time, a search has begun for elemental as pects of molecular and atomic behavior that might better define properties common to all life forms. This search has led to an examination of nonlinear behavior in biological macromolecules, whether in response to electrical or chemical stimulation, for example, or as a means of signaling along a molecular chain, or as a means of energy transfer. Experimental knowledge in this area has grown rapidly in the past decade, and in some respects has outstripped theoretical models adequate to ex plain these new observations. Nevertheless, it can be claimed that there is now an impressive body of experiments implicating non linear, nonequilibrium processes as fundamental steps in sequential operations of biological systems.


Nonlinear Dynamics, Mathematical Biology, And Social Science

Nonlinear Dynamics, Mathematical Biology, And Social Science

Author: Joshua M. Epstein

Publisher: CRC Press

Published: 2018-03-08

Total Pages: 132

ISBN-13: 0429973039

DOWNLOAD EBOOK

This book is based on a series of lectures on mathematical biology, the essential dynamics of complex and crucially important social systems, and the unifying power of mathematics and nonlinear dynamical systems theory.


Dynamics of Biological Systems

Dynamics of Biological Systems

Author: Michael Small

Publisher: CRC Press

Published: 2011-08-25

Total Pages: 286

ISBN-13: 1439853363

DOWNLOAD EBOOK

From the spontaneous rapid firing of cortical neurons to the spatial diffusion of disease epidemics, biological systems exhibit rich dynamic behaviour over a vast range of time and space scales. Unifying many of these diverse phenomena, Dynamics of Biological Systems provides the computational and mathematical platform from which to understand the underlying processes of the phenomena. Through an extensive tour of various biological systems, the text introduces computational methods for simulating spatial diffusion processes in excitable media, such as the human heart, as well as mathematical tools for dealing with systems of nonlinear ordinary and partial differential equations, such as neuronal activation and disease diffusion. The mathematical models and computer simulations offer insight into the dynamics of temporal and spatial biological systems, including cardiac pacemakers, artificial electrical defibrillation, pandemics, pattern formation, flocking behaviour, the interaction of autonomous agents, and hierarchical and structured network topologies. Tools from complex systems and complex networks are also presented for dealing with real phenomenological systems. With exercises and projects in each chapter, this classroom-tested text shows students how to apply a variety of mathematical and computational techniques to model and analyze the temporal and spatial phenomena of biological systems. MATLAB® implementations of algorithms and case studies are available on the author’s website.


Nonlinear and Complex Dynamics

Nonlinear and Complex Dynamics

Author: José António Tenreiro Machado

Publisher: Springer Science & Business Media

Published: 2011-08-28

Total Pages: 328

ISBN-13: 146140231X

DOWNLOAD EBOOK

Nonlinear Dynamics of Complex Systems describes chaos, fractal and stochasticities within celestial mechanics, financial systems and biochemical systems. Part I discusses methods and applications in celestial systems and new results in such areas as low energy impact dynamics, low-thrust planar trajectories to the moon and earth-to-halo transfers in the sun, earth and moon. Part II presents the dynamics of complex systems including bio-systems, neural systems, chemical systems and hydro-dynamical systems. Finally, Part III covers economic and financial systems including market uncertainty, inflation, economic activity and foreign competition and the role of nonlinear dynamics in each.


Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz

Publisher: CRC Press

Published: 2018-05-04

Total Pages: 532

ISBN-13: 0429961111

DOWNLOAD EBOOK

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.


Energy and Information Transfer in Biological Systems

Energy and Information Transfer in Biological Systems

Author: Larissa S. Brizhik

Publisher: World Scientific

Published: 2003

Total Pages: 380

ISBN-13: 9789812705181

DOWNLOAD EBOOK

This volume contains papers based on the workshop OC Energy and Information Transfer in Biological Systems: How Physics Could Enrich Biological UnderstandingOCO, held in Italy in 2002. The meeting was a forum aimed at evaluating the potential and outlooks of a modern physics approach to understanding and describing biological processes, especially regarding the transition from the microscopic chemical scenario to the macroscopic functional configurations of living matter. In this frame some leading researchers presented and discussed several basic topics, such as the photon interaction with biological systems also from the viewpoint of photon information processes and of possible applications; the influence of electromagnetic fields on the self-organization of biosystems including the nonlinear mechanism for energy transfer and storage; and the influence of the structure of water on the properties of biological matter."


Understanding Nonlinear Dynamics

Understanding Nonlinear Dynamics

Author: Daniel Kaplan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 438

ISBN-13: 1461208238

DOWNLOAD EBOOK

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the classical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics ( TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathematical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. About the Authors Daniel Kaplan specializes in the analysis of data using techniques motivated by nonlinear dynamics. His primary interest is in the interpretation of irregular physiological rhythms, but the methods he has developed have been used in geo physics, economics, marine ecology, and other fields. He joined McGill in 1991, after receiving his Ph.D from Harvard University and working at MIT. His un dergraduate studies were completed at Swarthmore College. He has worked with several instrumentation companies to develop novel types of medical monitors.


Nonlinear Dynamics in Biological Systems

Nonlinear Dynamics in Biological Systems

Author: Jorge Carballido-Landeira

Publisher: Springer

Published: 2016-07-20

Total Pages: 134

ISBN-13: 3319330543

DOWNLOAD EBOOK

This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied mathematicians, biophysicists, and computational biologists.