The Reaction Wheel Pendulum

The Reaction Wheel Pendulum

Author: Daniel J. Block

Publisher: Morgan & Claypool Publishers

Published: 2007-12-01

Total Pages: 112

ISBN-13: 1598291955

DOWNLOAD EBOOK

This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like device for control education and research. We discuss the history and background of the reaction wheel pendulum and other similar experimental devices. We develop mathematical models of the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the sensors and actuators that are used for feedback control. We treat various aspects of the control problem, from linear control of themotor, to stabilization of the pendulum about an equilibrium configuration using linear control, to the nonlinear control problem of swingup control. We also discuss hybrid and switching control, which is useful for switching between the swingup and balance controllers. We also discuss important practical issues such as friction modeling and friction compensation, quantization of sensor signals, and saturation. This monograph can be used as a supplement for courses in feedback control at the undergraduate level, courses in mechatronics, or courses in linear and nonlinear state space control at the graduate level. It can also be used as a laboratory manual and as a reference for research in nonlinear control.


How Can Robust Control of Nonlinear Systems be Achieved? Examining Optimization Techniques

How Can Robust Control of Nonlinear Systems be Achieved? Examining Optimization Techniques

Author: Bhawna Tandon

Publisher: GRIN Verlag

Published: 2019-10-18

Total Pages: 170

ISBN-13: 3346038653

DOWNLOAD EBOOK

Doctoral Thesis / Dissertation from the year 2019 in the subject Engineering - General, Basics, grade: A.00, , language: English, abstract: The following text examines the questions, how nonlinear system can better be controlled by new optimisation techniques such as feedback linearization. Due to the inevitable nonlinearities in real systems, several nonlinear control methods like feedback linearization, sliding mode control, backstepping approach and further modes are described in detail in the literature. Due to limitations in application of well known classical methods, researchers have struggled for decades to realize robust and practical solutions for nonlinear systems by proposing different approaches or improving classical control methods. The feedback linearization approach is a control method which employs feedback to stabilize systems containing nonlinearities. In order to accomplish this, it assumes perfect knowledge of the system model to linearize the input-output relationship. In the absence of perfect system knowledge, modelling errors inevitably affect the performanceof the feedback controller. Many researchers have come up with a new form of feedback linearization, called robust feedback. This method gives a linearizing control law that transforms the nonlinear system into its linear approximation around an operating point. Thus, it causes only a small transformation in the natural behavior of the system, which is desired in order to obtain robustness. The controllers are required to provide various time domain and frequency domain performances while maintaining sufficient stability robustness. In this regard, the evolutionary optimization techniques provide better option as these are probabilistic search procedures and facilitate inclusion of wide variety of time and frequency domain performance functionals in the objective functions. A significant scope of work remains to be done which provides motivation for the research in the design of robust controllers using evolutionary optimization. Also, emerging techniques using LMI also find potential in controller design for feedback linearized systems.The thrust of the study here is to design robust controllers for nonlinear systems using Evolutionary optimization and LMI. Furthermore, latest control methods for nonlinear system have been studied, deeply, in this thesis. Combining feedback linearization with non linear disturbance observer based control (NDOBC) obtains promising disturbance rejection and reference tracking performance as compared to other robust control methods.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLABĀ®.


On Control of Nonlinear Under-actuated Dynamic Systems (Comparative Study of Modern Control Methods in Application to Swing-up Control of Inverted Pendulum).

On Control of Nonlinear Under-actuated Dynamic Systems (Comparative Study of Modern Control Methods in Application to Swing-up Control of Inverted Pendulum).

Author: Dilian Hristov Stoikov

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The thesis presents comparative study of modern control methods for regulating under-actuates systems. The classical pendulum on a cart system, a 2-DOF under-actuated system was utilized as a benchmark system for analyzing controllers' performances. The work includes analysis, controller design and swing-up control simulation for the following three methods: Nonlinear state-space control The mathematical model based on the Lie theoretic approach with nonlinear output injection was developed. The controller accomplishes both swing-up and stabilization of the pendulum. The feasibility of the implementation is limited due to physical constraints (length of the cart rail). Fuzzy logic control A Sugeno type fuzzy inference engine implementing the control strategy was built over the system fuzzy model. The simulations showed successful controller behavior but the generated system control input exhibited some non-smoothness that could cause increase on the actuator demand. Method of embedded artificial constraints (EAC). The analysis reveals dependence between the pendulum motion and the cart acceleration. Using this artificial constraint a state link was developed and the nonlinear control problem was reduced to a linear controller design. A stabilizing linear state-space controller has been developed and methods for arbitrary pole placement and optimal linear quadratic regulator design were compared. A reduced order current estimator for velocity estimation has been studied and implemented. A software client/server controller application running on a QNX Neutrino 6.1 platform was developed. The real-time experiments conducted with the EAC/linear state-space controller confirmed good swing-up and stabilization system performance.


Advanced Control of Wheeled Inverted Pendulum Systems

Advanced Control of Wheeled Inverted Pendulum Systems

Author: Zhijun Li

Publisher: Springer Science & Business Media

Published: 2012-07-13

Total Pages: 226

ISBN-13: 1447129636

DOWNLOAD EBOOK

Advanced Control of Wheeled Inverted Pendulum Systems is an orderly presentation of recent ideas for overcoming the complications inherent in the control of wheeled inverted pendulum (WIP) systems, in the presence of uncertain dynamics, nonholonomic kinematic constraints as well as underactuated configurations. The text leads the reader in a theoretical exploration of problems in kinematics, dynamics modeling, advanced control design techniques and trajectory generation for WIPs. An important concern is how to deal with various uncertainties associated with the nominal model, WIPs being characterized by unstable balance and unmodelled dynamics and being subject to time-varying external disturbances for which accurate models are hard to come by. The book is self-contained, supplying the reader with everything from mathematical preliminaries and the basic Lagrange-Euler-based derivation of dynamics equations to various advanced motion control and force control approaches as well as trajectory generation method. Although primarily intended for researchers in robotic control, Advanced Control of Wheeled Inverted Pendulum Systems will also be useful reading for graduate students studying nonlinear systems more generally.


The Inverted Pendulum in Control Theory and Robotics

The Inverted Pendulum in Control Theory and Robotics

Author: Olfa Boubaker

Publisher: IET

Published: 2017-10-24

Total Pages: 409

ISBN-13: 1785613200

DOWNLOAD EBOOK

This book provides an overall picture of historical and current trends and developments in nonlinear control theory, based on the simple structure and rich nonlinear model of the inverted pendulum.


On Control of Nonlinear Under-actuated Dynamic Systems (Comparative Study of Modern Control Methods in Application to Swing-up Control of Inverted Pendulum).

On Control of Nonlinear Under-actuated Dynamic Systems (Comparative Study of Modern Control Methods in Application to Swing-up Control of Inverted Pendulum).

Author:

Publisher:

Published: 2004

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

The thesis presents comparative study of modern control methods for regulating under-actuates systems. The classical pendulum on a cart system, a 2-DOF under-actuated system was utilized as a benchmark system for analyzing controllers' performances. The work includes analysis, controller design and swing-up control simulation for the following three methods: Nonlinear state-space control The mathematical model based on the Lie theoretic approach with nonlinear output injection was developed. The controller accomplishes both swing-up and stabilization of the pendulum. The feasibility of the implementation is limited due to physical constraints (length of the cart rail). Fuzzy logic control A Sugeno type fuzzy inference engine implementing the control strategy was built over the system fuzzy model. The simulations showed successful controller behavior but the generated system control input exhibited some non-smoothness that could cause increase on the actuator demand. Method of embedded artificial constraints (EAC). The analysis reveals dependence between the pendulum motion and the cart acceleration. Using this artificial constraint a state link was developed and the nonlinear control problem was reduced to a linear controller design. A stabilizing linear state-space controller has been developed and methods for arbitrary pole placement and optimal linear quadratic regulator design were compared. A reduced order current estimator for velocity estimation has been studied and implemented. A software client/server controller application running on a QNX Neutrino 6.1 platform was developed. The real-time experiments conducted with the EAC/linear state-space controller confirmed good swing-up and stabilization system performance.


Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems

Block Backstepping Design of Nonlinear State Feedback Control Law for Underactuated Mechanical Systems

Author: Shubhobrata Rudra

Publisher: Springer

Published: 2016-09-08

Total Pages: 183

ISBN-13: 9811019568

DOWNLOAD EBOOK

This book presents a novel, generalized approach to the design of nonlinear state feedback control laws for a large class of underactuated mechanical systems based on application of the block backstepping method. The control law proposed here is robust against the effects of model uncertainty in dynamic and steady-state performance and addresses the issue of asymptotic stabilization for the class of underactuated mechanical systems. An underactuated system is defined as one for which the dimension of space spanned by the configuration vector is greater than that of the space spanned by the control variables. Control problems concerning underactuated systems currently represent an active field of research due to their broad range of applications in robotics, aerospace, and marine contexts. The book derives a generalized theory of block backstepping control design for underactuated mechanical systems, and examines several case studies that cover interesting examples of underactuated mechanical systems. The mathematical derivations are described using well-known notations and simple algebra, without the need for any special previous background in higher mathematics. The chapters are lucidly described in a systematic manner, starting with control system preliminaries and moving on to a generalized description of the block backstepping method, before turning to several case studies. Simulation and experimental results are also provided to aid in reader comprehension.


Applied Nonlinear Control

Applied Nonlinear Control

Author: Jean-Jacques E. Slotine

Publisher:

Published: 1991

Total Pages: 461

ISBN-13: 9780130400499

DOWNLOAD EBOOK

In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.