Nonlinear and Stochastic Climate Dynamics

Nonlinear and Stochastic Climate Dynamics

Author: Christian L. E. Franzke

Publisher: Cambridge University Press

Published: 2017-01-19

Total Pages: 612

ISBN-13: 1316883213

DOWNLOAD EBOOK

It is now widely recognized that the climate system is governed by nonlinear, multi-scale processes, whereby memory effects and stochastic forcing by fast processes, such as weather and convective systems, can induce regime behavior. Motivated by present difficulties in understanding the climate system and to aid the improvement of numerical weather and climate models, this book gathers contributions from mathematics, physics and climate science to highlight the latest developments and current research questions in nonlinear and stochastic climate dynamics. Leading researchers discuss some of the most challenging and exciting areas of research in the mathematical geosciences, such as the theory of tipping points and of extreme events including spatial extremes, climate networks, data assimilation and dynamical systems. This book provides graduate students and researchers with a broad overview of the physical climate system and introduces powerful data analysis and modeling methods for climate scientists and applied mathematicians.


Nonlinear and Stochastic Climate Dynamics

Nonlinear and Stochastic Climate Dynamics

Author: Christian L. E. Franzke

Publisher:

Published: 2016

Total Pages:

ISBN-13: 9781316883877

DOWNLOAD EBOOK

This edited volume discusses the recent developments and current research questions in nonlinear and stochastic climate dynamics.


Nonlinear Climate Dynamics

Nonlinear Climate Dynamics

Author: Henk A. Dijkstra

Publisher: Cambridge University Press

Published: 2013-06-17

Total Pages: 371

ISBN-13: 1107244374

DOWNLOAD EBOOK

This book introduces stochastic dynamical systems theory in order to synthesize our current knowledge of climate variability. Nonlinear processes, such as advection, radiation and turbulent mixing, play a central role in climate variability. These processes can give rise to transition phenomena, associated with tipping or bifurcation points, once external conditions are changed. The theory of dynamical systems provides a systematic way to study these transition phenomena. Its stochastic extension also forms the basis of modern (nonlinear) data analysis techniques, predictability studies and data assimilation methods. Early chapters apply the stochastic dynamical systems framework to a hierarchy of climate models to synthesize current knowledge of climate variability. Later chapters analyse phenomena such as the North Atlantic Oscillation, El Niño/Southern Oscillation, Atlantic Multidecadal Variability, Dansgaard–Oeschger events, Pleistocene ice ages and climate predictability. This book will prove invaluable for graduate students and researchers in climate dynamics, physical oceanography, meteorology and paleoclimatology.


Xenotransplantation and Risk

Xenotransplantation and Risk

Author: Sara Fovargue

Publisher: Cambridge University Press

Published: 2011-11-17

Total Pages: 307

ISBN-13: 1139503987

DOWNLOAD EBOOK

Some developing biotechnologies challenge accepted legal and ethical norms because of the risks they pose. Xenotransplantation (cross-species transplantation) may prolong life but may also harm the xeno-recipient and the public due to its potential to transmit infectious diseases. These trans-boundary diseases emphasise the global nature of advances in health care and highlight the difficulties of identifying, monitoring and regulating such risks and thereby protecting individual and public health. Xenotransplantation raises questions about how uncertainty and risk are understood and accepted, and exposes tensions between private benefit and public health. Where public health is at risk, a precautionary approach informed by the harm principle supports prioritising the latter, but the issues raised by genetically engineered solid organ xenotransplants have not, as yet, been sufficiently discussed. This must occur prior to their clinical introduction because of the necessary changes to accepted norms which are needed to appropriately safeguard individual and public health.


Advances in Nonlinear Geosciences

Advances in Nonlinear Geosciences

Author: Anastasios A. Tsonis

Publisher: Springer

Published: 2017-10-13

Total Pages: 708

ISBN-13: 3319588958

DOWNLOAD EBOOK

Advances in Nonlinear Geosciences is a set of contributions from the participants of “30 Years of Nonlinear Dynamics” held July 3-8, 2016 in Rhodes, Greece as part of the Aegean Conferences, as well as from several other experts in the field who could not attend the meeting. The volume brings together up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences and presents the new advances made in the last 10 years. Topics include chaos synchronization, topological data analysis, new insights on fractals, multifractals and stochasticity, climate dynamics, extreme events, complexity, and causality, among other topics.


Nonlinear Dynamics

Nonlinear Dynamics

Author: George Datseris

Publisher: Springer Nature

Published: 2022-03-13

Total Pages: 243

ISBN-13: 3030910326

DOWNLOAD EBOOK

This concise and up-to-date textbook provides an accessible introduction to the core concepts of nonlinear dynamics as well as its existing and potential applications. The book is aimed at students and researchers in all the diverse fields in which nonlinear phenomena are important. Since most tasks in nonlinear dynamics cannot be treated analytically, skills in using numerical simulations are crucial for analyzing these phenomena. The text therefore addresses in detail appropriate computational methods as well as identifying the pitfalls of numerical simulations. It includes numerous executable code snippets referring to open source Julia software packages. Each chapter includes a selection of exercises with which students can test and deepen their skills.


Stochastic Climate Models

Stochastic Climate Models

Author: Peter Imkeller

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 413

ISBN-13: 3034882874

DOWNLOAD EBOOK

A collection of articles written by mathematicians and physicists, designed to describe the state of the art in climate models with stochastic input. Mathematicians will benefit from a survey of simple models, while physicists will encounter mathematically relevant techniques at work.


Nonlinear Dynamics and Chaos: Advances and Perspectives

Nonlinear Dynamics and Chaos: Advances and Perspectives

Author: Marco Thiel

Publisher: Springer

Published: 2010-05-17

Total Pages: 300

ISBN-13: 3642046290

DOWNLOAD EBOOK

This book is a collection of papers contributed by some of the greatest names in the areas of chaos and nonlinear dynamics. Each paper examines a research topic at the frontier of the area of dynamical systems. As well as reviewing recent results, each paper also discusses the future perspectives of each topic. The result is an invaluable snapshot of the state of the ?eld by some of the most important researchers in the area. The ?rst contribution in this book (the section entitled “How did you get into Chaos?”) is actually not a paper, but a collection of personal accounts by a number of participants of the conference held in Aberdeen in September 2007 to honour Celso Grebogi’s 60th birthday. At the instigation of James Yorke, many of the most well-known scientists in the area agreed to share their tales on how they got involved in chaos during a celebratory dinner in Celso’s honour during the conference. This was recorded in video, we felt that these accounts were a valuable historic document for the ?eld. So we decided to transcribe it and include it here as the ?rst section of the book.


Chaotic Climate Dynamics

Chaotic Climate Dynamics

Author: A. Selvam

Publisher: Luniver Press

Published: 2007-08

Total Pages: 157

ISBN-13: 1905986076

DOWNLOAD EBOOK

Atmosphere is a chaotic system. As such it is inherently unpredictable. The book applies chaos theory to understand and predict climate systems. Author presents a cell dynamical system model for turbulent fluid flows. The model envisages the irregular space-time fluctuations of the atmospheric flow pattern generated as a consequence of the superimposition of a continuum of eddies. The natural space-time variability is quantified in terms of the universal inverse power-law form of the statistical normal distribution. A range of possible applications of the cell dynamical system model for weather and climate system is discussed. The book provides a comprehensive reference material for scientists and academicians working in the field of atmospheric sciences and related topics.