Nondetects and Data Analysis

Nondetects and Data Analysis

Author: Dennis R. Helsel

Publisher: Wiley-Interscience

Published: 2005

Total Pages: 276

ISBN-13:

DOWNLOAD EBOOK

STATISTICS IN PRACTICE Statistical methods for interpreting and analyzing censored environmental data Nondetects And Data Analysis: Statistics for Censored Environmental Data provides solutions for environmental scientists and professionals who need to interpret and analyze data that fall below the laboratory detection limit. Adapting survival analysis methods that have been successfully used in medical and industrial research, the author demonstrates, for the first time, their practical applications for studies of trace chemicals in air, water, soils, and biota. Readers quickly become proficient in these methods through the use of real-world examples that are solved using MINITAB® Release 14, a popular statistical software package, as well as other commonly used software packages. Everything needed to master these innovative statistical methods is provided, including: Accompanying Web site featuring answers to book exercises and datasets, as well as MINITAB® macros to perform methods, which are not available in the commercial version Methods for data with multiple detection limits Solutions for research studies in which all data are below detection limits Techniques for constructing confidence, prediction, and tolerance intervals for data with nond-tects Methods for data with multiple detection limits Chapters are organized by objective, such as computing intervals, comparing groups, and correlations, which enables readers to more easily apply the text to their particular research and goals. Extensive references to the literature for more in-depth research are provided; however, the text itself avoids complex math and calculus making it accessible to anyone in the environmental sciences. Environmental scientists and professionals will find the hands-on guidance and practical examples invaluable.


Statistics for Censored Environmental Data Using Minitab and R

Statistics for Censored Environmental Data Using Minitab and R

Author: Dennis R. Helsel

Publisher: John Wiley & Sons

Published: 2012-02-01

Total Pages: 344

ISBN-13: 0470479884

DOWNLOAD EBOOK

Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.


Statistical Methods in Water Resources

Statistical Methods in Water Resources

Author: D.R. Helsel

Publisher: Elsevier

Published: 1993-03-03

Total Pages: 539

ISBN-13: 0080875084

DOWNLOAD EBOOK

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.


Statistical Applications for Environmental Analysis and Risk Assessment

Statistical Applications for Environmental Analysis and Risk Assessment

Author: Joseph Ofungwu

Publisher: John Wiley & Sons

Published: 2014-05-27

Total Pages: 656

ISBN-13: 1118634535

DOWNLOAD EBOOK

Statistical Applications for Environmental Analysis and Risk Assessment guides readers through real-world situations and the best statistical methods used to determine the nature and extent of the problem, evaluate the potential human health and ecological risks, and design and implement remedial systems as necessary. Featuring numerous worked examples using actual data and “ready-made” software scripts, Statistical Applications for Environmental Analysis and Risk Assessment also includes: • Descriptions of basic statistical concepts and principles in an informal style that does not presume prior familiarity with the subject • Detailed illustrations of statistical applications in the environmental and related water resources fields using real-world data in the contexts that would typically be encountered by practitioners • Software scripts using the high-powered statistical software system, R, and supplemented by USEPA’s ProUCL and USDOE’s VSP software packages, which are all freely available • Coverage of frequent data sample issues such as non-detects, outliers, skewness, sustained and cyclical trend that habitually plague environmental data samples • Clear demonstrations of the crucial, but often overlooked, role of statistics in environmental sampling design and subsequent exposure risk assessment.


Introduction to Statistical Analysis of Laboratory Data

Introduction to Statistical Analysis of Laboratory Data

Author: Alfred Bartolucci

Publisher: John Wiley & Sons

Published: 2015-12-02

Total Pages: 259

ISBN-13: 1118736869

DOWNLOAD EBOOK

Introduction to Statistical Analysis of Laboratory Data presents a detailed discussion of important statistical concepts and methods of data presentation and analysis Provides detailed discussions on statistical applications including a comprehensive package of statistical tools that are specific to the laboratory experiment process Introduces terminology used in many applications such as the interpretation of assay design and validation as well as “fit for purpose” procedures including real world examples Includes a rigorous review of statistical quality control procedures in laboratory methodologies and influences on capabilities Presents methodologies used in the areas such as method comparison procedures, limit and bias detection, outlier analysis and detecting sources of variation Analysis of robustness and ruggedness including multivariate influences on response are introduced to account for controllable/uncontrollable laboratory conditions


EnvStats

EnvStats

Author: Steven P. Millard

Publisher: Springer Science & Business Media

Published: 2013-10-16

Total Pages: 305

ISBN-13: 1461484561

DOWNLOAD EBOOK

This book describes EnvStats, a new comprehensive R package for environmental statistics and the successor to the S-PLUS module EnvironmentalStats for S-PLUS (first released in 1997). EnvStats and R provide an open-source set of powerful functions for performing graphical and statistical analyses of environmental data, bringing major environmental statistical methods found in the literature and regulatory guidance documents into one statistical package, along with an extensive hypertext help system that explains what these methods do, how to use these methods, and where to find them in the environmental statistics literature. EnvStats also includes numerous built-in data sets from regulatory guidance documents and the environmental statistics literature. This book shows how to use EnvStats and R to easily: * graphically display environmental data * plot probability distributions * estimate distribution parameters and construct confidence intervals on the original scale for commonly used distributions such as the lognormal and gamma, as well as do this nonparametrically * estimate and construct confidence intervals for distribution percentiles or do this nonparametrically (e.g., to compare to an environmental protection standard) * perform and plot the results of goodness-of-fit tests * compute optimal Box-Cox data transformations * compute prediction limits and simultaneous prediction limits (e.g., to assess compliance at multiple sites for multiple constituents) * perform nonparametric estimation and test for seasonal trend (even in the presence of correlated observations) * perform power and sample size computations and create companion plots for sampling designs based on confidence intervals, hypothesis tests, prediction intervals, and tolerance intervals * deal with non-detect (censored) data * perform Monte Carlo simulation and probabilistic risk assessment * reproduce specific examples in EPA guidance documents EnvStats combined with other R packages (e.g., for spatial analysis) provides the environmental scientist, statistician, researcher, and technician with tools to “get the job done!”


Compositional Data Analysis

Compositional Data Analysis

Author: Vera Pawlowsky-Glahn

Publisher: John Wiley & Sons

Published: 2011-09-19

Total Pages: 405

ISBN-13: 0470711353

DOWNLOAD EBOOK

It is difficult to imagine that the statistical analysis of compositional data has been a major issue of concern for more than 100 years. It is even more difficult to realize that so many statisticians and users of statistics are unaware of the particular problems affecting compositional data, as well as their solutions. The issue of ``spurious correlation'', as the situation was phrased by Karl Pearson back in 1897, affects all data that measures parts of some whole, such as percentages, proportions, ppm and ppb. Such measurements are present in all fields of science, ranging from geology, biology, environmental sciences, forensic sciences, medicine and hydrology. This book presents the history and development of compositional data analysis along with Aitchison's log-ratio approach. Compositional Data Analysis describes the state of the art both in theoretical fields as well as applications in the different fields of science. Key Features: Reflects the state-of-the-art in compositional data analysis. Gives an overview of the historical development of compositional data analysis, as well as basic concepts and procedures. Looks at advances in algebra and calculus on the simplex. Presents applications in different fields of science, including, genomics, ecology, biology, geochemistry, planetology, chemistry and economics. Explores connections to correspondence analysis and the Dirichlet distribution. Presents a summary of three available software packages for compositional data analysis. Supported by an accompanying website featuring R code. Applied scientists working on compositional data analysis in any field of science, both in academia and professionals will benefit from this book, along with graduate students in any field of science working with compositional data.


Network Meta-Analysis for Decision-Making

Network Meta-Analysis for Decision-Making

Author: Sofia Dias

Publisher: John Wiley & Sons

Published: 2018-03-19

Total Pages: 484

ISBN-13: 1118647505

DOWNLOAD EBOOK

A practical guide to network meta-analysis with examples and code In the evaluation of healthcare, rigorous methods of quantitative assessment are necessary to establish which interventions are effective and cost-effective. Often a single study will not provide the answers and it is desirable to synthesise evidence from multiple sources, usually randomised controlled trials. This book takes an approach to evidence synthesis that is specifically intended for decision making when there are two or more treatment alternatives being evaluated, and assumes that the purpose of every synthesis is to answer the question "for this pre-identified population of patients, which treatment is 'best'?" A comprehensive, coherent framework for network meta-analysis (mixed treatment comparisons) is adopted and estimated using Bayesian Markov Chain Monte Carlo methods implemented in the freely available software WinBUGS. Each chapter contains worked examples, exercises, solutions and code that may be adapted by readers to apply to their own analyses. This book can be used as an introduction to evidence synthesis and network meta-analysis, its key properties and policy implications. Examples and advanced methods are also presented for the more experienced reader. Methods used throughout this book can be applied consistently: model critique and checking for evidence consistency are emphasised. Methods are based on technical support documents produced for NICE Decision Support Unit, which support the NICE Methods of Technology Appraisal. Code presented is also the basis for the code used by the ISPOR Task Force on Indirect Comparisons. Includes extensive carefully worked examples, with thorough explanations of how to set out data for use in WinBUGS and how to interpret the output. Network Meta-Analysis for Decision Making will be of interest to decision makers, medical statisticians, health economists, and anyone involved in Health Technology Assessment including the pharmaceutical industry.


Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners

Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners

Author: Marcos von Sperling

Publisher: IWA Publishing

Published: 2020-01-15

Total Pages: 668

ISBN-13: 1780409311

DOWNLOAD EBOOK

This book presents the basic principles for evaluating water quality and treatment plant performance in a clear, innovative and didactic way, using a combined approach that involves the interpretation of monitoring data associated with (i) the basic processes that take place in water bodies and in water and wastewater treatment plants and (ii) data management and statistical calculations to allow a deep interpretation of the data. This book is problem-oriented and works from practice to theory, covering most of the information you will need, such as (a) obtaining flow data and working with the concept of loading, (b) organizing sampling programmes and measurements, (c) connecting laboratory analysis to data management, (e) using numerical and graphical methods for describing monitoring data (descriptive statistics), (f) understanding and reporting removal efficiencies, (g) recognizing symmetry and asymmetry in monitoring data (normal and log-normal distributions), (h) evaluating compliance with targets and regulatory standards for effluents and water bodies, (i) making comparisons with the monitoring data (tests of hypothesis), (j) understanding the relationship between monitoring variables (correlation and regression analysis), (k) making water and mass balances, (l) understanding the different loading rates applied to treatment units, (m) learning the principles of reaction kinetics and reactor hydraulics and (n) performing calibration and verification of models. The major concepts are illustrated by 92 fully worked-out examples, which are supported by 75 freely-downloadable Excel spreadsheets. Each chapter concludes with a checklist for your report. If you are a student, researcher or practitioner planning to use or already using treatment plant and water quality monitoring data, then this book is for you! 75 Excel spreadsheets are available to download.


Statistical Modeling for Biomedical Researchers

Statistical Modeling for Biomedical Researchers

Author: William D. Dupont

Publisher: Cambridge University Press

Published: 2009-02-12

Total Pages: 543

ISBN-13: 0521849527

DOWNLOAD EBOOK

A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.