Non-perturbative Quantum Field Theory

Non-perturbative Quantum Field Theory

Author: Jürg Fröhlich

Publisher: World Scientific Publishing Company Incorporated

Published: 1992

Total Pages: 841

ISBN-13: 9789810204334

DOWNLOAD EBOOK

A collection of 22 reprints of Frohlich's articles on non-perturbative aspects of quantum field theory, more than half of them of a review character, on topics in phase transitions and continuous symmetry breaking; non-perturbative quantization of topological solitons; gauge theories, including (the infrared problem in) quantum electrodynamics; random geometry (quantum gravity and strings); and low-dimensional QFT--two-dimensional conformal field theory, three-dimensional (gauge) theories. No index. Paper edition (unseen), $48. Annotation copyrighted by Book News, Inc., Portland, OR


Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications

Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications

Author: Jurg Frohlich

Publisher: World Scientific

Published: 1992-04-29

Total Pages: 855

ISBN-13: 9814506567

DOWNLOAD EBOOK

Compiled to illustrate the recent history of Quantum Field Theory and its trends, this collection of selected reprints by Jürg Fröhlich, a leading theoretician in the field, is a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past fifteen years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature.The volume begins with a comprehensive introduction by Jürg Fröhlich.The theory of phase transitions and continuous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of λϖ4 — theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on “random geometry”. The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory.


Non-Perturbative Field Theory

Non-Perturbative Field Theory

Author: Yitzhak Frishman

Publisher: Cambridge University Press

Published: 2010-04-08

Total Pages: 455

ISBN-13: 1139486489

DOWNLOAD EBOOK

Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.


Nonperturbative Quantum Field Theory

Nonperturbative Quantum Field Theory

Author: G. Hooft

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 603

ISBN-13: 1461307295

DOWNLOAD EBOOK

During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.


Mathematical Aspects of Quantum Field Theory

Mathematical Aspects of Quantum Field Theory

Author: Edson de Faria

Publisher: Cambridge University Press

Published: 2010-08-12

Total Pages:

ISBN-13: 1139489801

DOWNLOAD EBOOK

Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.


An Introduction to the Mathematical Structure of Quantum Mechanics

An Introduction to the Mathematical Structure of Quantum Mechanics

Author: F. Strocchi

Publisher: World Scientific

Published: 2008

Total Pages: 193

ISBN-13: 9812835229

DOWNLOAD EBOOK

Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.


Non-perturbative Description of Quantum Systems

Non-perturbative Description of Quantum Systems

Author: Ilya Feranchuk

Publisher: Springer

Published: 2014-12-18

Total Pages: 374

ISBN-13: 3319130064

DOWNLOAD EBOOK

This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.


Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)

Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes)

Author: Gerhard Grensing

Publisher: World Scientific

Published: 2021-07-15

Total Pages: 1656

ISBN-13: 9811237093

DOWNLOAD EBOOK

The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.


Advanced Topics in Quantum Mechanics

Advanced Topics in Quantum Mechanics

Author: Marcos Mariño

Publisher: Cambridge University Press

Published: 2021-12-09

Total Pages: 274

ISBN-13: 1108852858

DOWNLOAD EBOOK

Quantum mechanics is one of the most successful theories in science, and is relevant to nearly all modern topics of scientific research. This textbook moves beyond the introductory and intermediate principles of quantum mechanics frequently covered in undergraduate and graduate courses, presenting in-depth coverage of many more exciting and advanced topics. The author provides a clearly structured text for advanced students, graduates and researchers looking to deepen their knowledge of theoretical quantum mechanics. The book opens with a brief introduction covering key concepts and mathematical tools, followed by a detailed description of the Wentzel–Kramers–Brillouin (WKB) method. Two alternative formulations of quantum mechanics are then presented: Wigner's phase space formulation and Feynman's path integral formulation. The text concludes with a chapter examining metastable states and resonances. Step-by-step derivations, worked examples and physical applications are included throughout.