Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.
The use of fiber reinforced plastic (FRP) composites for prestressed and non-prestressed concrete reinforcement has developed into a technology with serious and substantial claims for the advancement of construction materials and methods. Research and development is now occurring worldwide. The 20 papers in this volume make a further contribution in advancing knowledge and acceptance of FRP composites for concrete reinforcement. The articles are divided into three parts. Part I introduces FRP reinforcement for concrete structures and describes general material properties and manufacturing meth.
High strength fibre composites (FRPs) have been used with civil structures since the 1980s, mostly in the repair, strengthening and retrofitting of concrete structures. This has attracted considerable research, and the industry has expanded exponentially in the last decade. Design guidelines have been developed by professional organizations in a nu
"In 1993, the CEB Commission 2 Material and Behavior Modelling established the Task Group 2.5 Bond Models. It's terms of reference were ... to write a state-of-art report concerning bond of reinforcement in concrete and later recommend how the knowledge could be applied in practice (Model Code like text proposal)... {This work} covers the first part ... the state-of-art report."--Pref.
Corrosion-resistant, electromagnetic transparent and lightweight fiber-reinforced polymers (FRPs) are accepted as valid alternatives to steel in concrete reinforcement. Reinforced Concrete with FRP Bars: Mechanics and Design, a technical guide based on the authors more than 30 years of collective experience, provides principles, algorithms, and pr
Geopolymer Concrete Structures with Steel and FRP Reinforcements: Analysis and Design focuses on structural behavior, including the aspects of compression, bending strength and combined action of GPC members, with the book's content based on published studies over the last two decades. Geopolymer concrete (GPC) structural members reinforced with FRP reinforcement have some advantages in resisting forces compared to conventional concrete or steel tubular members. Among the most important are the high strength and bending stiffness, fire and impact performance and favorable, construction ability and durability. To this end, there are no significant applications of these new structural elements worldwide, partly due to the lack of the understanding of their behavior and insufficient design provisions in different design manuals. This book, therefore, seeks to highlight their characteristics and future potential. - Provides comprehensive, up-to-date advances on Geopolymer Concrete (GPC) reinforced with steel and FRP bars and stirrups construction with a summary of over 100 papers published in the last decade - Compares the behavior and failure modes between Geopolymer Concrete (GPC) structures and Ordinary Portland Concrete (OPC) structures - Explains important concepts such as bond, confinement, fracture of stirrups and buckling of FRP bars - Includes an in-depth analysis of ultimate strength of GPC and OPC, considering governing failure modes - Presents design examples following international standards, including North America ACI 440.1R-15, Canadian CAN/CSA S806, and Australian such as AS 3600
fib Bulletin 40 deals mainly with the use of FRP bars as internal reinforcement for concrete structures. The background of the main physical and mechanical properties of FRP reinforcing bars is presented, with special emphasis on durability aspects. For each of the typical ultimate and serviceability limit states, the basic mechanical model is given, followed by different design models according to existing codes or design guidelines. Composite FRP materials are still relatively new in construction and most engineers are unfamiliar with their properties and characteristics. The second chapter of this bulletin therefore aims to provide practising engineers with the necessary background knowledge in this field, and also presents typical products currently available in the international market. The third chapter deals with the issue of durability and identifies the parameters that can lead to deterioration, which is necessary information when addressing design issues. A series of parameters is used to identify the allowable stress in the FRP after exposure for a specified period of time in a specific environment. The bulletin covers the issues of Ultimate Limit States (primarily dealing with flexural design), Serviceability Limit States (dealing with deflections and cracking), Shear and Punching Shear and Bond and Tension Stiffening. It provides not only the state-of-the-art but also in many cases ideas for the next generation of design guidelines. The final chapter deals with the fundamental issue of design philosophy. The use of these new materials as concrete reinforcement has forced researchers to re-think many of the fundamental principles used until now in RC design. The bulletin ends with a discussion of a possible new framework for developing partial safety factors to ensure specific safety levels that will be flexible enough to cope with new materials.
Fibre reinforced plastics are increasingly being used as replacements for steel reinforcement in concrete structures. The reinforcement can be untensioned, or it can be in the form of prestressing tendons. It is also suitable for gluing onto the outside of a structure to improve flexural or shear performance. This book provides up-to-date research results to give engineers confidence in their design methods.
In recent years, the fabrication technologies for the production of advanced polymer composites have been revolutionised by sophisticated manufacturing techniques. These methods have enabled polymer composite materials to produce good quality laminates with minimal voids and accurate fibre alignment. This book familiarises and provides a background to the understanding and use of advanced polymer composites in the civil infrastructure; numerous examples have been provided to illustrate the use and versatility of the material. Furthermore, the book discusses the current fabrication techniques, design methods and formulae for the design of structural composite systems. In addition it discusses the fundamentals of geosynthetics used in geotechnical engineering. The book introduces the fibres and matrices that are used to manufacture composites, their mechanical and in-service properties and their long term loading characteristics; all these properties are specifically associated with the construction industry. The chapters then discuss the design aspects for 'all composite' units, as well as systems used for the renewal of civil infrastructure. Finally, the book demonstrated the unique possibilities of combining composites with conventional materials to form units in which the various materials making up the unit are loaded in the mode that specifically suits their mechanical characteristics.
Fiber-reinforced polymer (FRP) composites have become an integral part of the construction industry because of their versatility, enhanced durability and resistance to fatigue and corrosion, high strength-to-weight ratio, accelerated construction, and lower maintenance and life-cycle costs. Advanced FRP composite materials are also emerging for a w