Non-LTE Radiative Transfer in the Atmosphere

Non-LTE Radiative Transfer in the Atmosphere

Author: Manuel López-Puertas

Publisher: World Scientific

Published: 2001

Total Pages: 512

ISBN-13: 9789812811493

DOWNLOAD EBOOK

Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.


Non-lte Radiative Transfer In The Atmosphere

Non-lte Radiative Transfer In The Atmosphere

Author: Manuel Lopez-puertas

Publisher: World Scientific

Published: 2001-12-13

Total Pages: 506

ISBN-13: 9814491462

DOWNLOAD EBOOK

During the last three decades, it has become increasingly clear that atmospheric modelling and remote sounding of the atmosphere from space, to name just two important application areas, are affected by non-equilibrium processes which have not been incorporated into traditional radiative transfer calculations. These processes, dubbed “non-LTE”, are therefore the subject of growing interest among scholars and researchers dealing with the upper atmosphere. This important book provides the first comprehensive and “global” description of non-LTE infrared emissions in the atmosphere of the Earth and other planets, starting with the theoretical foundations and progressing to the most important applications. Besides giving an introduction to this complex subject, it is a guide to the state-of-the-art in incorporating non-LTE processes into radiative transfer algorithms and computer models of the atmosphere. Numerous examples are presented of the application of these methods to (a) atmospheric remote sensing, (b) atmospheric energy budget (cooling and heating rate) calculations, and (c) atmospheres other than the Earth's.


The Atmosphere and Climate of Mars

The Atmosphere and Climate of Mars

Author: Robert M. Haberle

Publisher: Cambridge University Press

Published: 2017-06-29

Total Pages: 613

ISBN-13: 1107016185

DOWNLOAD EBOOK

This volume reviews all aspects of Mars atmospheric science from the surface to space, and from now and into the past.


Radiative Processes in Astrophysics

Radiative Processes in Astrophysics

Author: George B. Rybicki

Publisher: John Wiley & Sons

Published: 2008-09-26

Total Pages: 402

ISBN-13: 352761818X

DOWNLOAD EBOOK

Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.


Theory of Stellar Atmospheres

Theory of Stellar Atmospheres

Author: Ivan Hubeny

Publisher: Princeton University Press

Published: 2014-10-26

Total Pages: 944

ISBN-13: 0691163294

DOWNLOAD EBOOK

The most authoritative synthesis of the quantitative spectroscopic analysis of stellar atmospheres This book provides an in-depth and self-contained treatment of the latest advances achieved in quantitative spectroscopic analyses of the observable outer layers of stars and similar objects. Written by two leading researchers in the field, it presents a comprehensive account of both the physical foundations and numerical methods of such analyses. The book is ideal for astronomers who want to acquire deeper insight into the physical foundations of the theory of stellar atmospheres, or who want to learn about modern computational techniques for treating radiative transfer in non-equilibrium situations. It can also serve as a rigorous yet accessible introduction to the discipline for graduate students. Provides a comprehensive, up-to-date account of the field Covers computational methods as well as the underlying physics Serves as an ideal reference book for researchers and a rigorous yet accessible textbook for graduate students An online illustration package is available to professors at press.princeton.edu


Radiative Transfer

Radiative Transfer

Author: Subrahmanyan Chandrasekhar

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 418

ISBN-13: 0486318451

DOWNLOAD EBOOK

This book by a Nobel Laureate provides the foundation for analysis of stellar atmospheres, planetary illumination, and sky radiation. Suitable for students and professionals in physics, nuclear physics, astrophysics, and atmospheric studies. 1950 edition.


High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies

High Spectral Resolution Infrared Remote Sensing for Earth’s Weather and Climate Studies

Author: Alain Chedin

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 484

ISBN-13: 3642845991

DOWNLOAD EBOOK

One of major challenges facing Earth's science in the next decade and beyondis the development of an accurate long term observational data set to study global change. To accomplish this, a wide range of observations will be required to provide both new measurements, not previously achievable and measurements with a greater degreee of accuracy and resolution than the ones which are presently and currently available. Among the parameters that are currently retrieved from satellite vertical sounding observations, temperature and moisture profiles are the most important for the description of the thermodynamic state of the medium. Other parameters, like those describing the cloud fields, the surface state or the conditions close to the surface are also key parameters for meteorology and climatology. A new generation of high spectral atmospheric sounders in the infrared has recently been designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies. Among the important observations that these instruments should contribute to the climate data set are day and night global measurements of: atmospheric temperature profiles; relative humidity profiles; cloud field parameters; total ozone burden of the atmosphere; distribution of minor atmospehric gases (methane, carbonmonoxide and nitrous oxide).


Initial Results from the Fast Imaging Solar Spectrograph (FISS)

Initial Results from the Fast Imaging Solar Spectrograph (FISS)

Author: Jongchul Chae

Publisher: Springer

Published: 2014-10-14

Total Pages: 140

ISBN-13: 3319121235

DOWNLOAD EBOOK

Describes the instruments and initial results of the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory. This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS), one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope. These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations. This volume is aimed at graduate students and researchers working in the field of solar physics and space sciences. Originally published in Solar Physics, Vol. 288, Issue 1, 2013, and Vol. 289, Issue 11, 2014.