Fundamental Aspects of Plasma Chemical Physics

Fundamental Aspects of Plasma Chemical Physics

Author: Mario Capitelli

Publisher: Springer Science & Business Media

Published: 2015-11-26

Total Pages: 330

ISBN-13: 1441981853

DOWNLOAD EBOOK

Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the book will assess fundamental concepts and theoretical formulations, based on a unified methodological approach, and explore the insight in related scientific problems still opened for the research community.


Kinetics of Nonequilibrium Low-Temperature Plasmas

Kinetics of Nonequilibrium Low-Temperature Plasmas

Author: Leon Mikhaĭlovich Biberman

Publisher: Springer

Published: 1987-09-30

Total Pages: 512

ISBN-13:

DOWNLOAD EBOOK

The first research on plasma was done in connection with the study of electrical discharges in gases. The focus of attention for physicists was the partially ionized plasma, the kinetics of which is governed by various collisional and radiative processes. The choice of this area of research was motivated largely by the practical problems of that time the creation of gas-discharge light sources, rectifiers, and inverters. Since the early 1950s interest in plasma physics has risen sharply, particularly in the study of the completely ionized plasma with its various collective phenomena, insta bilities, and the interesting and sometimes unexpected effects attending the propagation of electromagnetic waves in such a plasma and the action on it of external electric and magnetic fields. Interest in hot plasmas has been stimulated not only by the diverse and novel physical phenomena, but also by the problems arising in connection with controlled nuclear fusion. The advent, in the early 1960s, of new technical fields such as gas-discharge lasers, magnetohydrodynamic generators, thermoemission converters, plasma chemistry, plasma propul sion devices, various methods in plasma technology, etc. , has led to increased interest in weakly ionized low-tempera ture plasmas. This is particularly true of nonequilibrium plasmas, which are characterized by an extraordinary diver sity of states and properties.


Plasma Catalysis

Plasma Catalysis

Author: Annemie Bogaerts

Publisher: MDPI

Published: 2019-04-02

Total Pages: 248

ISBN-13: 3038977500

DOWNLOAD EBOOK

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.


Physics and Applications of Hydrogen Negative Ion Sources

Physics and Applications of Hydrogen Negative Ion Sources

Author: Marthe Bacal

Publisher: Springer Nature

Published: 2023-05-10

Total Pages: 622

ISBN-13: 3031214765

DOWNLOAD EBOOK

This book gives a comprehensive overview of hydrogen negative ion sources and their applications to particle acceleration and nuclear fusion. The book begins with fundamental aspects of negative ion production by volume and surface processes in hydrogen and its isotopes. It covers key topics, such as the need for separation of negative ion production and extraction regions, the need for lowering the work function of the plasma electrode by using caesium vapor or special materials for caesium-free sources, and the ion extractor structure required for hydrogen negative ion sources. Chapters covering various specific ion sources and applications are written by scientists who participated in their development and include sources for accelerators and for neutral beam injection into controlled nuclear fusion reactors.


Kinetics and Spectroscopy of Low Temperature Plasmas

Kinetics and Spectroscopy of Low Temperature Plasmas

Author: Jorge Loureiro

Publisher: Springer

Published: 2016-06-22

Total Pages: 460

ISBN-13: 3319092537

DOWNLOAD EBOOK

This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students’ needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas (LTP) are partially ionized gases with a broad use in many technological applications such as microelectronics, light sources, lasers, biology and medicine. LTPs lead to the production of atomic and molecular excited states, chemically reactive radicals, and activated surface sites, which are in the origin, among others, of the deposition of thin films, advanced nanotechnology products, solar cells, highly efficient combustion motors, and treatment of cancer cells.


The Sun as a Guide to Stellar Physics

The Sun as a Guide to Stellar Physics

Author: Oddbjørn Engvold

Publisher: Elsevier

Published: 2018-11-15

Total Pages: 524

ISBN-13: 0128143355

DOWNLOAD EBOOK

The Sun as a Guide to Stellar Physics illustrates the significance of the Sun in understanding stars through anexamination of the discoveries and insights gained from solar physics research. Ranging from theories to modelingand from numerical simulations to instrumentation and data processing, the book provides an overview of whatwe currently understand and how the Sun can be a model for gaining further knowledge about stellar physics.Providing both updates on recent developments in solar physics and applications to stellar physics, this bookstrengthens the solar–stellar connection and summarizes what we know about the Sun for the stellar, space, andgeophysics communities. - Applies observations, theoretical understanding, modeling capabilities and physical processes first revealed by the sun to the study of stellar physics - Illustrates how studies of Proxima Solaris have led to progress in space science, stellar physics and related fields - Uses characteristics of solar phenomena as a guide for understanding the physics of stars


Plasma Chemistry

Plasma Chemistry

Author: Alexander Fridman

Publisher: Cambridge University Press

Published: 2008-05-05

Total Pages:

ISBN-13: 1139471732

DOWNLOAD EBOOK

Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.


Nonequilibrium Vibrational Kinetics

Nonequilibrium Vibrational Kinetics

Author: Mario Capitelli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 354

ISBN-13: 3642486150

DOWNLOAD EBOOK

This book is devoted to the systematic treatment of nonequi 1 ibrium vibrational kinetics in molecular systems. Particular emphasis is given to the vibrational excitation of diatomic molecules by low-energy electrons in a discharge and by IR photons in laser-pumped systems. The book follows the different steps of the introduction, redistribution, loss, and chemical conversion of the vibrational quanta, from the points of view of the overall kinetics and the dynamics of elementary processes. These two aspects are balanced in a multidisciplinary approach. The different chapters give the basic instruments (theoretical and experimental) which are needed to understand the ki netics of nonequilibrium systems. The book will introduce the reader to different areas such as plasmachemistry, laser chemistry, IR and Raman spectroscopy, and relaxation phenomena, emphasizing how the vibrational energy affects such research fields. The chapters dedicated to collisional dynamics involving vibrational excited molecules provide an introduc tion to the modern techniques uti 1 ized in the scattering theory of inelastic and reactive collisions. The extension of the vibrational kinetics to polyatomic mole cules, discussed in Chap. 10, is the natural bridge between coll ision and coll i sionless regimes. In conclusion, we hope that the approach followed in this book will stimulate the collaboration of researchers coming from different research fields, which are too often completely separate.


Handbook of Industrial Diamonds and Diamond Films

Handbook of Industrial Diamonds and Diamond Films

Author: Mark A. Prelas

Publisher: Routledge

Published: 2018-12-19

Total Pages: 1232

ISBN-13: 135144249X

DOWNLOAD EBOOK

Examines both mined and synthetic diamonds and diamond films. The text offers coverage on the use of diamond as an engineering material, integrating original research on the science, technology and applications of diamond. It discusses the use of chemical vapour deposition grown diamonds in electronics, cutting tools, wear resistant coatings, thermal management, optics and acoustics, as well as in new products.