A comprehensive overview of nicotinic receptors that addresses their history from crystal structure to behavior as well as their implications in disease and potential as therapeutic targets. It includes background information on all subtypes of nicotinic receptors, the most recent information on the distribution throughout the nervous system and discussion of their implications in learning and memory, addiction and neurological and psychiatric disease such as Alzheimer's and Parkinson's. Takes advantage of several recent developments in the fields of optogenetics, viral expression and gene analysis to focus on current knowledge on the functional aspects of nicotinic receptors.
Neuronal nicotinic receptors are key molecules for signal transduction in a number of neuronal pathways. They are widely distributed in the brain and are known to be involved in cognitive tasks, including learning and memory, in smoking addiction and in several brain diseases, such as Alzheimer's and Parkinson's dementias, schizophrenia, and epilepsy. This book provides a comprehensive review of the field, starting with a historical perspective and dealing with the molecular structure of these receptors, their biophysical and pharmacological properties, their distribution in central and peripheral nervous systems, and their major involvement in brain functions. Particular emphasis is paid to drugs (both new and old) that are useful in the diagnosis and treatment of diseases involving neuronal nicotinic receptors. Finally, the relevance of these receptors in smoking addiction is carefully evaluated, together with future trends and the latest results.
The series CNS Neurotransmitters and Neuromodulators is destined to be the definitive reference work on the physiology and pharmacology of the central nervous system. Written by an outstanding group of international authors, chapters cover a wide range of interdisciplinary aspects of the subject. This first volume includes an in-depth examination of acetylcholine, ranging from the localization of synthetic enzymes through electrophysiology, pharmacology, and molecular biology to behavioral importance in learning and memory. This indispensable and comprehensive reference keeps you abreast of new developments in several areas of neuroscience.
The aim of this book is to summarize our understanding on the insect nicotinic acetylcholine receptors. This area of research received great impetus from the identification of the first subunit sequences to be used as neonicotinoid insecticide target sites. Although a book of this nature can provide the details only of commonly published results, it is hoped that it may provide a useful guide to the newcomer to the field as well as to point out some of the future challenges. For example, we need to determine the precise subunit nomenclature of insect nicotinic receptors. This nomenclature varies amongst species and this led to some of the early confusion that persists. We need to be precise in identifying the subunit composition of native insect nicotinic receptor subtypes, their functional properties and physiological roles.
Cellular and Molecular Neurophysiology, Fourth Edition, is the only up-to-date textbook on the market that focuses on the molecular and cellular physiology of neurons and synapses. Hypothesis-driven rather than a dry presentation of the facts, the book promotes a real understanding of the function of nerve cells that is useful for practicing neurophysiologists and students in a graduate-level course on the topic alike. This new edition explains the molecular properties and functions of excitable cells in detail and teaches students how to construct and conduct intelligent research experiments. The content is firmly based on numerous experiments performed by top experts in the field This book will be a useful resource for neurophysiologists, neurobiologists, neurologists, and students taking graduate-level courses on neurophysiology. - 70% new or updated material in full color throughout, with more than 350 carefully selected and constructed illustrations - Fifteen appendices describing neurobiological techniques are interspersed in the text
The purpose of this book is to present a focused approach to the pathophysiology, diagnosis, and management of the most common autonomic disorders that may present to the clinical neurologist. Autonomic Neurology is divided into 3 sections. The first section includes 5 chapters reviewing the anatomical and biochemical mechanisms of central and peripheral nervous system control of autonomic function, principles of autonomic pharmacology, and a clinical and laboratory approach to the diagnosis of autonomic disorders. The second section focuses on the pathophysiology and management of orthostatic hypotension, postural tachycardia, baroreflex failure; syncope, disorders of sweating, neurogenic bladder and sexual dysfunction, gastrointestinal dysmotility, and autonomic hyperactivity. The final section is devoted to specific autonomic disorders, including central neurodegenerative disorders; common peripheral neuropathies with prominent autonomic failure; painful small fiber neuropathies; autoimmune autonomic ganglionopathies and neuropathies; focal brain disorders; focal spinal cord disorders; and chronic pain disorders with autonomic manifestations. This book is the product of the extensive experience of its contributors in the evaluation and management of the many patients with autonomic symptoms who are referred for neurologic consultation at Mayo Clinic in Rochester, Minnesota. Autonomic Neurology focuses on clinical scenarios and presentation of clinical cases and includes several figures showing the results of normal and abnormal autonomic testing in typical conditions. Its abundance of tables summarizing the differential diagnosis, testing, and management of autonomic disorders also help set this book apart from other books focused on the autonomic nervous system.
Understanding Drug Action: An Introduction to Pharmacology provides readers with a survey of the scientific understanding of drug action. This readable introduction to pharmacology is simple enough to be understood without having to take a class to follow the material, but can also be used to complement a course in pharmacology. The approach to pharmacology is at a basic scientific level to build a framework of how drugs work supplemented with information on some representative drugs that are used clinically. Each chapter includes review questions and many chapters include tables of important drugs with brand and generic names.
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography