A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi
Next generation sequencing (NGS) has surpassed the traditional Sanger sequencing method to become the main choice for large-scale, genome-wide sequencing studies with ultra-high-throughput production and a huge reduction in costs. The NGS technologies have had enormous impact on the studies of structural and functional genomics in all the life sciences. In this book, Next Generation Sequencing Advances, Applications and Challenges, the sixteen chapters written by experts cover various aspects of NGS including genomics, transcriptomics and methylomics, the sequencing platforms, and the bioinformatics challenges in processing and analysing huge amounts of sequencing data. Following an overview of the evolution of NGS in the brave new world of omics, the book examines the advances and challenges of NGS applications in basic and applied research on microorganisms, agricultural plants and humans. This book is of value to all who are interested in DNA sequencing and bioinformatics across all fields of the life sciences.
Clinical Applications for Next Generation Sequencing provides readers with an outstanding postgraduate resource to learn about the translational use of NGS in clinical environments. Rooted in both medical genetics and clinical medicine, the book fills the gap between state-of-the-art technology and evidence-based practice, providing an educational opportunity for users to advance patient care by transferring NGS to the needs of real-world patients. The book builds an interface between genetic laboratory staff and clinical health workers to not only improve communication, but also strengthen cooperation. Users will find valuable tactics they can use to build a systematic framework for understanding the role of NGS testing in both common and rare diseases and conditions, from prenatal care, like chromosomal abnormalities, up to advanced age problems like dementia. - Fills the gap between state-of-the-art technology and evidence-based practice - Provides an educational opportunity which advances patient care through the transfer of NGS to real-world patient assessment - Promotes a practical tool that clinicians can apply directly to patient care - Includes a systematic framework for understanding the role of NGS testing in many common and rare diseases - Presents evidence regarding the important role of NGS in current diagnostic strategies
"Next-generation DNA sequencing (NGS) technology has revolutionized biomedical research, making complete genome sequencing an affordable and frequently used tool for a wide variety of research applications. This book provides a thorough introduction to the necessary informatics methods and tools for operating NGS instruments and analyzing NGS data"
"Genetic Genealogy in Practice covers the basic knowledge needed to apply DNA evidence to genealogical questions and then reinforces this foundation with practical applications. Each chapter ends with exercises that include real problems that researchers encounter. Answers allow complex concepts to be reviewed and mastered. As well as covering the basics of DNA testing for family history research problems, Genetic Genealogy in Practice includes discussions of ethical issues, genealogical standards, and tips on how to incorporate genetic evidence into a written conclusion. Researchers of all levels will gain a better understanding of genetic genealogy from this book."--Page [4] of cover.
Nucleic acid sequencing techniques have enabled researchers to determine the exact order of base pairs - and by extension, the information present - in the genome of living organisms. Consequently, our understanding of this information and its link to genetic expression at molecular and cellular levels has lead to rapid advances in biology, genetics, biotechnology and medicine. Next-Generation Sequencing and Sequence Data Analysis is a brief primer on DNA sequencing techniques and methods used to analyze sequence data. Readers will learn about recent concepts and methods in genomics such as sequence library preparation, cluster generation for PCR technologies, PED sequencing, genome assembly, exome sequencing, transcriptomics and more. This book serves as a textbook for students undertaking courses in bioinformatics and laboratory methods in applied biology. General readers interested in learning about DNA sequencing techniques may also benefit from the simple format of information presented in the book.
The goal of this book is to introduce the biological and technical aspects of next generation sequencing methods, as well as algorithms to assemble these sequences into whole genomes. The book is organized into two parts; part 1 introduces NGS methods and part 2 reviews assembly algorithms and gives a good insight to these methods for readers new to the field. Gathering information, about sequencing and assembly methods together, helps both biologists and computer scientists to get a clear idea about the field. Chapters will include information about new sequencing technologies such as ChIp-seq, ChIp-chip, and De Novo sequence assembly.
Next Generation Sequencing (NGS) Technology in DNA Analysis explains and summarizes next generation sequencing (NGS) technological applications in the field of forensic DNA analysis. The book covers the transition from capillary electrophoresis (CE)-based technique to NGS platforms and the fundamentals of NGS technologies, applications, and advances. Sections provide an overview of NGS technology and forensic science, including information on processing biological samples for forensic analysis, sequence analysis, and data analysis software as well as the analysis of NGS data. The book explores the valuable applications of NGS-based forensic DNA analysis and covers the validations and interpretation guidelines of NGS workflows. With chapter contributions from an international array of experts and the inclusion of practical case studies, this book is a useful reference for academicians and researchers in genetics, biotechnology, bioinformatics, biology, and medicine as well as forensic DNA scientists and practitioners who aim to learn, use, apply, and validate NGS-based technologies. - Describes the fundamentals of NGS and its advances for forensic applications - Explains the transition from CE-based technique to NGS technology - Includes case studies related to NGS and DNA fingerprinting - Explores the future use and applications of NGS technologies
Everyone tracing a family's history faces a dilemma. We strive to reconstruct relationships and lives of people we cannot see, but if we cannot see them, how do we know we have portrayed them accurately? The genealogical proof standard aims to help researchers, students, and new family historians address this dilemma and apply respected standards for acceptable conclusions.