Direct Methods for Stability Analysis of Electric Power Systems

Direct Methods for Stability Analysis of Electric Power Systems

Author: Hsiao-Dong Chiang

Publisher: John Wiley & Sons

Published: 2011-03-16

Total Pages: 461

ISBN-13: 1118088123

DOWNLOAD EBOOK

Learn how to implement BCU methods for fast direct stability assessments of electric power systems Electric power providers around the world rely on stability analysis programs to help ensure uninterrupted service to their customers. These programs are typically based on step-by-step numerical integrations of power system stability models to simulate system dynamic behaviors. Unfortunately, this offline practice is inadequate to deal with current operating environments. For years, direct methods have held the promise of providing real-time stability assessments; however, these methods have presented several challenges and limitations. This book addresses these challenges and limitations with the BCU methods developed by author Hsiao-Dong Chiang. To date, BCU methods have been adopted by twelve major utility companies in Asia and North America. In addition, BCU methods are the only direct methods adopted by the Electric Power Research Institute in its latest version of DIRECT 4.0. Everything you need to take full advantage of BCU methods is provided, including: Theoretical foundations of direct methods Theoretical foundations of energy functions BCU methods and their theoretical foundations Group-based BCU method and its applications Numerical studies on industrial models and data Armed with a solid foundation in the underlying theory of direct methods, energy functions, and BCU methods, you'll discover how to efficiently solve complex practical problems in stability analysis. Most chapters begin with an introduction and end with concluding remarks, making it easy for you to implement these tested and proven methods that will help you avoid costly and dangerous power outages.


Energy Flow Theory of Nonlinear Dynamical Systems with Applications

Energy Flow Theory of Nonlinear Dynamical Systems with Applications

Author: Jing Tang Xing

Publisher:

Published: 2015

Total Pages: 299

ISBN-13: 9783319177427

DOWNLOAD EBOOK

This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing?s oscillator, Van der Pol?s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as an undergraduate or graduate textbook or a comprehensive source for scientists, researchers and engineers, providing the statement of the art on energy flow or power flow theory and methods.