New Perspectives on Approximation and Sampling Theory

New Perspectives on Approximation and Sampling Theory

Author: Ahmed I. Zayed

Publisher: Springer

Published: 2014-11-03

Total Pages: 487

ISBN-13: 3319088017

DOWNLOAD EBOOK

Paul Butzer, who is considered the academic father and grandfather of many prominent mathematicians, has established one of the best schools in approximation and sampling theory in the world. He is one of the leading figures in approximation, sampling theory, and harmonic analysis. Although on April 15, 2013, Paul Butzer turned 85 years old, remarkably, he is still an active research mathematician. In celebration of Paul Butzer’s 85th birthday, New Perspectives on Approximation and Sampling Theory is a collection of invited chapters on approximation, sampling, and harmonic analysis written by students, friends, colleagues, and prominent active mathematicians. Topics covered include approximation methods using wavelets, multi-scale analysis, frames, and special functions. New Perspectives on Approximation and Sampling Theory requires basic knowledge of mathematical analysis, but efforts were made to keep the exposition clear and the chapters self-contained. This volume will appeal to researchers and graduate students in mathematics, applied mathematics and engineering, in particular, engineers working in signal and image processing.


Sampling, Approximation, and Signal Analysis

Sampling, Approximation, and Signal Analysis

Author: Stephen D. Casey

Publisher: Springer Nature

Published: 2024-01-04

Total Pages: 580

ISBN-13: 3031411307

DOWNLOAD EBOOK

During his long and distinguished career, J. Rowland Higgins (1935-2020) made a substantial impact on many mathematical fields through his work on sampling theory, his deep knowledge of its history, and his service to the community. This volume is a tribute to his work and legacy, featuring chapters written by distinguished mathematicians that explore cutting-edge research in sampling, approximation, signal analysis, and other related areas. An introductory chapter provides a biography of Higgins that explores his rich and unique life, along with a bibliography of his papers; a brief history of the SampTA meetings – of which he was a Founding Member – is also included. The remaining articles are grouped into four sections – classical sampling, theoretical extensions, frame theory, and applications of sampling theory – and explore Higgins’ contributions to these areas, as well as some of the latest developments.


Sampling: Theory and Applications

Sampling: Theory and Applications

Author: Stephen D. Casey

Publisher: Springer Nature

Published: 2020-05-20

Total Pages: 210

ISBN-13: 3030362914

DOWNLOAD EBOOK

The chapters of this volume are based on talks given at the eleventh international Sampling Theory and Applications conference held in 2015 at American University in Washington, D.C. The papers highlight state-of-the-art advances and trends in sampling theory and related areas of application, such as signal and image processing. Chapters have been written by prominent mathematicians, applied scientists, and engineers with an expertise in sampling theory. Claude Shannon’s 100th birthday is also celebrated, including an introductory essay that highlights Shannon’s profound influence on the field. The topics covered include both theory and applications, such as: • Compressed sensing• Non-uniform and wave sampling• A-to-D conversion• Finite rate of innovation• Time-frequency analysis• Operator theory• Mobile sampling issues Sampling: Theory and Applications is ideal for mathematicians, engineers, and applied scientists working in sampling theory or related areas.


Sampling Theory, a Renaissance

Sampling Theory, a Renaissance

Author: Götz E. Pfander

Publisher: Birkhäuser

Published: 2015-12-08

Total Pages: 532

ISBN-13: 3319197495

DOWNLOAD EBOOK

Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.


New Trends in Applied Harmonic Analysis

New Trends in Applied Harmonic Analysis

Author: Akram Aldroubi

Publisher: Birkhäuser

Published: 2016-04-21

Total Pages: 356

ISBN-13: 3319278738

DOWNLOAD EBOOK

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.


New Sinc Methods of Numerical Analysis

New Sinc Methods of Numerical Analysis

Author: Gerd Baumann

Publisher: Springer Nature

Published: 2021-04-23

Total Pages: 411

ISBN-13: 303049716X

DOWNLOAD EBOOK

This contributed volume honors the 80th birthday of Frank Stenger who established new Sinc methods in numerical analysis.The contributions, written independently from each other, show the new developments in numerical analysis in connection with Sinc methods and approximations of solutions for differential equations, boundary value problems, integral equations, integrals, linear transforms, eigenvalue problems, polynomial approximations, computations on polyhedra, and many applications. The approximation methods are exponentially converging compared with standard methods and save resources in computation. They are applicable in many fields of science including mathematics, physics, and engineering.The ideas discussed serve as a starting point in many different directions in numerical analysis research and applications which will lead to new and unprecedented results. This book will appeal to a wide readership, from students to specialized experts.


Topics in Classical and Modern Analysis

Topics in Classical and Modern Analysis

Author: Martha Abell

Publisher: Springer Nature

Published: 2019-10-21

Total Pages: 384

ISBN-13: 3030122778

DOWNLOAD EBOOK

Different aspects of harmonic analysis, complex analysis, sampling theory, approximation theory and related topics are covered in this volume. The topics included are Fourier analysis, Padè approximation, dynamical systems and difference operators, splines, Christoffel functions, best approximation, discrepancy theory and Jackson-type theorems of approximation. The articles of this collection were originated from the International Conference in Approximation Theory, held in Savannah, GA in 2017, and organized by the editors of this volume.


Metrics, Norms, Inner Products, and Operator Theory

Metrics, Norms, Inner Products, and Operator Theory

Author: Christopher Heil

Publisher: Birkhäuser

Published: 2018-08-28

Total Pages: 374

ISBN-13: 3319653229

DOWNLOAD EBOOK

This text is a self-contained introduction to the three main families that we encounter in analysis – metric spaces, normed spaces, and inner product spaces – and to the operators that transform objects in one into objects in another. With an emphasis on the fundamental properties defining the spaces, this book guides readers to a deeper understanding of analysis and an appreciation of the field as the “science of functions.” Many important topics that are rarely presented in an accessible way to undergraduate students are included, such as unconditional convergence of series, Schauder bases for Banach spaces, the dual of lp topological isomorphisms, the Spectral Theorem, the Baire Category Theorem, and the Uniform Boundedness Principle. The text is constructed in such a way that instructors have the option whether to include more advanced topics. Written in an appealing and accessible style, Metrics, Norms, Inner Products, and Operator Theory is suitable for independent study or as the basis for an undergraduate-level course. Instructors have several options for building a course around the text depending on the level and interests of their students. Key features: Aimed at students who have a basic knowledge of undergraduate real analysis. All of the required background material is reviewed in the first chapter. Suitable for undergraduate-level courses; no familiarity with measure theory is required. Extensive exercises complement the text and provide opportunities for learning by doing. A separate solutions manual is available for instructors via the Birkhäuser website (www.springer.com/978-3-319-65321-1). Unique text providing an undergraduate-level introduction to metrics, norms, inner products, and their associated operator theory.


Theoretical Physics, Wavelets, Analysis, Genomics

Theoretical Physics, Wavelets, Analysis, Genomics

Author: Patrick Flandrin

Publisher: Springer Nature

Published: 2023-05-31

Total Pages: 650

ISBN-13: 3030458474

DOWNLOAD EBOOK

Over the course of a scientific career spanning more than fifty years, Alex Grossmann (1930-2019) made many important contributions to a wide range of areas including, among others, mathematics, numerical analysis, physics, genetics, and biology. His lasting influence can be seen not only in his research and numerous publications, but also through the relationships he cultivated with his collaborators and students. This edited volume features chapters written by some of these colleagues, as well as researchers whom Grossmann’s work and way of thinking has impacted in a decisive way. Reflecting the diversity of his interests and their interdisciplinary nature, these chapters explore a variety of current topics in quantum mechanics, elementary particles, and theoretical physics; wavelets and mathematical analysis; and genomics and biology. A scientific biography of Grossmann, along with a more personal biography written by his son, serve as an introduction. Also included are the introduction to his PhD thesis and an unpublished paper coauthored by him. Researchers working in any of the fields listed above will find this volume to be an insightful and informative work.