New Energy Vehicle Powertrain Technologies and Applications

New Energy Vehicle Powertrain Technologies and Applications

Author: Yong Chen

Publisher: Springer Nature

Published: 2023-06-15

Total Pages: 461

ISBN-13: 9811995664

DOWNLOAD EBOOK

This book focuses on transmission systems for pure electric and hybrid vehicles. It first discusses system development and optimization technologies, comprehensively and systematically describing the development trends, structures and technical characteristics, as well as the related technologies and methods. It highlights the principles, implementation process and energy management of the power transmission system based on the pure electric and hybrid mode management method, and examines the reliability and NVH characteristic tests and optimization technologies. Combining research theory and engineering practice, the book is a valuable reference resource for engineering and technical professionals in the field of automobile and related power transmission machinery as well as undergraduate and graduate students.


Electric Powertrain

Electric Powertrain

Author: John G. Hayes

Publisher: John Wiley & Sons

Published: 2018-02-05

Total Pages: 564

ISBN-13: 1119063647

DOWNLOAD EBOOK

The why, what and how of the electric vehicle powertrain Empowers engineering professionals and students with the knowledge and skills required to engineer electric vehicle powertrain architectures, energy storage systems, power electronics converters and electric drives. The modern electric powertrain is relatively new for the automotive industry, and engineers are challenged with designing affordable, efficient and high-performance electric powertrains as the industry undergoes a technological evolution. Co-authored by two electric vehicle (EV) engineers with decades of experience designing and putting into production all of the powertrain technologies presented, this book provides readers with the hands-on knowledge, skills and expertise they need to rise to that challenge. This four-part practical guide provides a comprehensive review of battery, hybrid and fuel cell EV systems and the associated energy sources, power electronics, machines, and drives. Introduces and holistically integrates the key EV powertrain technologies. Provides a comprehensive overview of existing and emerging automotive solutions. Provides experience-based expertise for vehicular and powertrain system and sub-system level study, design, and optimization. Presents many examples of powertrain technologies from leading manufacturers. Discusses the dc traction machines of the Mars rovers, the ultimate EVs from NASA. Investigates the environmental motivating factors and impacts of electromobility. Presents a structured university teaching stream from introductory undergraduate to postgraduate. Includes real-world problems and assignments of use to design engineers, researchers, and students alike. Features a companion website with numerous references, problems, solutions, and practical assignments. Includes introductory material throughout the book for the general scientific reader. Contains essential reading for government regulators and policy makers. Electric Powertrain: Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles is an important professional resource for practitioners and researchers in the battery, hybrid, and fuel cell EV transportation industry. The resource is a structured, holistic textbook for the teaching of the fundamental theories and applications of energy sources, power electronics, and electric machines and drives to engineering undergraduate and postgraduate students.


Future Powertrain Technologies

Future Powertrain Technologies

Author: Stephan Rinderknecht

Publisher: MDPI

Published: 2020-12-17

Total Pages: 264

ISBN-13: 3039437534

DOWNLOAD EBOOK

Among the various factors greatly influencing the development process of future powertrain technologies, the trends in climate change and digitalization are of huge public interest. To handle these trends, new disruptive technologies are integrated into the development process. They open up space for diverse research which is distributed over the entire vehicle design process. This book contains recent research articles which incorporate results for selecting and designing powertrain topology in consideration of the vehicle operating strategy as well as results for handling the reliability of new powertrain components. The field of investigation spans from the identification of ecologically optimal transformation of the existent vehicle fleet to the development of machine learning-based operating strategies and the comparison of complex hybrid electric vehicle topologies to reduce CO2 emissions.


New Energy Vehicle Powertrain Technologies and Applications

New Energy Vehicle Powertrain Technologies and Applications

Author: Yong Chen

Publisher:

Published: 2023

Total Pages: 0

ISBN-13: 9789811995675

DOWNLOAD EBOOK

This book focuses on transmission systems for pure electric and hybrid vehicles. It first discusses system development and optimization technologies, comprehensively and systematically describing the development trends, structures and technical characteristics, as well as the related technologies and methods. It highlights the principles, implementation process and energy management of the power transmission system based on the pure electric and hybrid mode management method, and examines the reliability and NVH characteristic tests and optimization technologies. Combining research theory and engineering practice, the book is a valuable reference resource for engineering and technical professionals in the field of automobile and related power transmission machinery as well as undergraduate and graduate students.


Transitions to Alternative Vehicles and Fuels

Transitions to Alternative Vehicles and Fuels

Author: National Research Council

Publisher: National Academies Press

Published: 2013-04-14

Total Pages: 395

ISBN-13: 0309268524

DOWNLOAD EBOOK

For a century, almost all light-duty vehicles (LDVs) have been powered by internal combustion engines operating on petroleum fuels. Energy security concerns about petroleum imports and the effect of greenhouse gas (GHG) emissions on global climate are driving interest in alternatives. Transitions to Alternative Vehicles and Fuels assesses the potential for reducing petroleum consumption and GHG emissions by 80 percent across the U.S. LDV fleet by 2050, relative to 2005. This report examines the current capability and estimated future performance and costs for each vehicle type and non-petroleum-based fuel technology as options that could significantly contribute to these goals. By analyzing scenarios that combine various fuel and vehicle pathways, the report also identifies barriers to implementation of these technologies and suggests policies to achieve the desired reductions. Several scenarios are promising, but strong, and effective policies such as research and development, subsidies, energy taxes, or regulations will be necessary to overcome barriers, such as cost and consumer choice.


Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation

Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation

Author: Szumanowski, Antoni

Publisher: IGI Global

Published: 2013-05-31

Total Pages: 446

ISBN-13: 146664043X

DOWNLOAD EBOOK

Hybridization is an increasingly popular paradigm in the auto industry, but one that is not fully understood by car manufacturers. In general, hybrid electric vehicles (HEV) are designed without regard to the mechanics of the power train, which is developed similarly to its counterparts in internal combustion engines. Hybrid Electric Power Train Engineering and Technology: Modeling, Control, and Simulation provides readers with an academic investigation into HEV power train design using mathematical modeling and simulation of various hybrid electric motors and control systems. This book explores the construction of the most energy efficient power trains, which is of importance to designers, manufacturers, and students of mechanical engineering. This book is part of the Research Essentials collection.


Hybrid Electric Vehicles

Hybrid Electric Vehicles

Author: Chris Mi

Publisher: John Wiley & Sons

Published: 2017-11-29

Total Pages: 611

ISBN-13: 111897056X

DOWNLOAD EBOOK

The latest developments in the field of hybrid electric vehicles Hybrid Electric Vehicles provides an introduction to hybrid vehicles, which include purely electric, hybrid electric, hybrid hydraulic, fuel cell vehicles, plug-in hybrid electric, and off-road hybrid vehicular systems. It focuses on the power and propulsion systems for these vehicles, including issues related to power and energy management. Other topics covered include hybrid vs. pure electric, HEV system architecture (including plug-in & charging control and hydraulic), off-road and other industrial utility vehicles, safety and EMC, storage technologies, vehicular power and energy management, diagnostics and prognostics, and electromechanical vibration issues. Hybrid Electric Vehicles, Second Edition is a comprehensively updated new edition with four new chapters covering recent advances in hybrid vehicle technology. New areas covered include battery modelling, charger design, and wireless charging. Substantial details have also been included on the architecture of hybrid excavators in the chapter related to special hybrid vehicles. Also included is a chapter providing an overview of hybrid vehicle technology, which offers a perspective on the current debate on sustainability and the environmental impact of hybrid and electric vehicle technology. Completely updated with new chapters Covers recent developments, breakthroughs, and technologies, including new drive topologies Explains HEV fundamentals and applications Offers a holistic perspective on vehicle electrification Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, Second Edition is a great resource for researchers and practitioners in the automotive industry, as well as for graduate students in automotive engineering.


Electromagnetic Compatibility of Electric Vehicle

Electromagnetic Compatibility of Electric Vehicle

Author: Li Zhai

Publisher: Springer Nature

Published: 2021-01-30

Total Pages: 447

ISBN-13: 9813361654

DOWNLOAD EBOOK

This book introduces the electromagnetic compatibility(EMC) of electric vehicle(EV), including EMC of the whole vehicle, electromagnetic interference(EMI) prediction and suppression of motor drive system, EMI prediction and suppression of DC-DC converter, electromagnetic field safety and EMC of wireless charging system, signal integrity and EMC of the vehicle controller unit(VCU), EMC of battery management system(BMS), electromagnetic radiated emission diagnosis and suppression of the whole vehicle, etc. The analysis method, modeling and simulation method, test method and rectification method of EMC are demonstrated. The simulation and experimental results are presented as tables and figures. This book is useful as reference for graduate students, senior undergraduates and engineering technicians of vehicle engineering related majors. For EMI prediction, suppression and EMC optimization design for EVs, this book provides reference for engineers to solve EMC problems. This book is intended for senior undergraduates, postgraduates, lecturers and laboratory researchers engaged in electric vehicle and electromagnetic compatibility research.


Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Author: National Research Council

Publisher: National Academies Press

Published: 2015-09-28

Total Pages: 812

ISBN-13: 0309373913

DOWNLOAD EBOOK

The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.


Vehicle Power Management

Vehicle Power Management

Author: Xi Zhang

Publisher: Springer Science & Business Media

Published: 2011-08-12

Total Pages: 353

ISBN-13: 0857297368

DOWNLOAD EBOOK

Vehicle Power Management addresses the challenge of improving vehicle fuel economy and reducing emissions without sacrificing vehicle performance, reliability and durability. It opens with the definition, objectives, and current research issues of vehicle power management, before moving on to a detailed introduction to the modeling of vehicle devices and components involved in the vehicle power management system, which has been proven to be the most cost-effective and efficient method for initial-phase vehicle research and design. Specific vehicle power management algorithms and strategies, including the analytical approach, optimal control, intelligent system approaches and wavelet technology, are derived and analyzed for realistic applications. Vehicle Power Management also gives a detailed description of several key technologies in the design phases of hybrid electric vehicles containing battery management systems, component optimization, hardware-in-the-loop and software-in-the-loop. Vehicle Power Management provides graduate and upper level undergraduate students, engineers, and researchers in both academia and the automotive industry, with a clear understanding of the concepts, methodologies, and prospects of vehicle power management.