Theory of Multiobjective Optimization

Theory of Multiobjective Optimization

Author: Yoshikazu Sawaragi

Publisher: Elsevier

Published: 1985-09-19

Total Pages: 311

ISBN-13: 0080958664

DOWNLOAD EBOOK

In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering


Nonlinear Multiobjective Optimization

Nonlinear Multiobjective Optimization

Author: Claus Hillermeier

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 139

ISBN-13: 3034882807

DOWNLOAD EBOOK

Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods.


Extended Trust-tech Methodology for Nonlinear Optimization

Extended Trust-tech Methodology for Nonlinear Optimization

Author: Bin Wang

Publisher:

Published: 2012

Total Pages: 454

ISBN-13:

DOWNLOAD EBOOK

Many theoretical and practical problems can be formulated as a global optimization problem. Traditional local optimization methods can only attain a local optimal solution and be entrapped in the local optimal solution; while existing global optimization algorithms usually sparsely approximates the global optimal solution in a stochastic manner. In contrast, the transformation under stability-retaining equilibrium characterization (TRUST-TECH) methodology prevails over existing algorithms due to its capability of locating multiple, if not all, local optimal solutions to the optimization problem deterministically and systematically in a tier-by-tier manner. The TRUST-TECH methodology was developed to solve unconstrained and constrained nonlinear optimization problems. This work extends the TRUST-TECH methodology by incorporating new analytical results, developing new solution methods and solving new problems in practical applications. This work first provides analytical results regarding the invariance of partial stability region in quasi-gradient systems. Our motivation is to resolve numerical difficulties arising in implementations of trajectory based methods, including TRUST-TECH. Improved algorithms were developed to resolve these issues by altering the original problem to speed-up movement of the trajectory. However, such operations can lead the trajectory converge to a different solution, which could be undesired under specific situations. This work attempts to answer the question regarding invariant convergence for a special class of numerical operations whose dynamical behaviours can be characterized by a quasi-gradient dynamical system. To this end, we study relationship between a gradient dynamical system and its associated quasi-gradient system and reveal the invariance of partial stability region in the quasi-gradient system. These analytical results lead to methods for checking invariant convergence of the trajectory starting from a given point in the quasi-gradient system and the algorithm to maintain invariant convergence. This work also develops new solution methods to enhance TRUST-TECH's capability of solving constrained nonlinear optimization problems and applies them to solve practical problems arising in different applications. Specifically, TRUST-TECH based methods are first developed for feasibility computation and restoration and are applied to power system applications, including power flow computation and feasibility restoration for infeasible optimal power flow problems. Indeed, a unified framework based on TRUST-TECH is introduced for analysing feasibility and infeasibility for nonlinear problems. Secondly, the TRUST-TECH based interior point method (TT-IPM) and the reduced projected gradient method are developed to better tackle constrained nonlinear optimization problems. As application, the TT-IPM method is used to solve mixed-integer nonlinear programs (MINLPs). Finally, this work develops the ensemble of optimal, input-pruned neural networks using TRUST-TECH (ELITE) method for constructing high-quality neural network ensembles and applies ELITE to build a short-term load forecaster named ELITE-STLF with promising performance. Possible extensions of the TRUST-TECH methodology to a much broader range of optimization models, including multi-objective optimization and variational optimization, are suggested for future research efforts.