Recent Developments in Superconductivity Research

Recent Developments in Superconductivity Research

Author: Barry P. Martins

Publisher: Nova Publishers

Published: 2007

Total Pages: 366

ISBN-13: 9781600214622

DOWNLOAD EBOOK

Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.


New Developments in Superconductivity Research

New Developments in Superconductivity Research

Author: Ross W. Stevens

Publisher: Nova Biomedical Books

Published: 2003

Total Pages: 254

ISBN-13:

DOWNLOAD EBOOK

High-Tc superconductors have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This book presents leading research from around the world in this exciting field.


New Developments In Applied Superconductivity - Proceedings Of The International Symposium

New Developments In Applied Superconductivity - Proceedings Of The International Symposium

Author: Yukitaka Murakami

Publisher: World Scientific

Published: 1989-06-01

Total Pages: 830

ISBN-13: 9813201401

DOWNLOAD EBOOK

This symposium focused on new superconductors, electronics, magnet technology, energy and new applications. Recent discoveries in HTc, with transition temperatures over 90 K, have spawned a search for practical new applications. These applications extend from current uses such as that of the medical MRI to future applications, represented by research on new high-temperature materials. They span from microcircuit applications to the proposed SMES and fusion reactor applications.


Theory Of Superconductivity

Theory Of Superconductivity

Author: J. Robert Schrieffer

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 352

ISBN-13: 0429964250

DOWNLOAD EBOOK

Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.


Superconductivity Research Developments

Superconductivity Research Developments

Author: James R. Tobin

Publisher: Nova Publishers

Published: 2008

Total Pages: 268

ISBN-13: 9781600218484

DOWNLOAD EBOOK

Superconductivity is a phenomenon occurring in certain materials at extremely low temperatures, characterized by exactly zero electrical resistance and the exclusion of the interior magnetic field (the Meissner effect). The electrical resistivity of a metallic conductor decreases gradually as the temperature is lowered. However, in ordinary conductors such as copper and silver, impurities and other defects impose a lower limit. Even near absolute zero a real sample of copper shows a non-zero resistance. The resistance of a superconductor, on the other hand, drops abruptly to zero when the material is cooled below its "critical temperature", typically 20 kelvin or less. An electrical current flowing in a loop of superconducting wire can persist indefinitely with no power source. Like ferromagnetism and atomic spectral lines, superconductivity is a quantum mechanical phenomenon. It cannot be understood simply as the idealisation of "perfect conductivity" in classical physics. Superconductivity occurs in a wide variety of materials, including simple elements like tin and aluminium, various metallic alloys and some heavily-doped semiconductors. Superconductivity does not occur in noble metals like gold and silver, nor in most ferromagnetic metals. In 1986 the discovery of a family of cuprate-perovskite ceramic materials known as high-temperature superconductors, with critical temperatures in excess of 90 kelvin, spurred renewed interest and research in superconductivity for several reasons. As a topic of pure research, these materials represented a new phenomenon not explained by the current theory. And, because the superconducting state persists up to more manageable temperatures, more commercial applications are feasible, especially if materials with even higher critical temperatures could be discovered. This new book presents leading research from around the world in this dynamic field.


New Topics in Superconductivity Research

New Topics in Superconductivity Research

Author: Barry P. Martins

Publisher: Nova Publishers

Published: 2006

Total Pages: 334

ISBN-13: 9781594549854

DOWNLOAD EBOOK

Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. High-Tc superconductors also have significant potential for applications in technologies ranging from electric power generation and transmission to digital electronics. This ability to carry large amounts of current can be applied to electric power devices such as motors and generators, and to electricity transmission in power lines. For example, superconductors can carry as much as 100 times the amount of electricity of ordinary copper or aluminium wires of the same size. Many universities, research institutes and companies are working to develop high-Tc superconductivity applications and considerable progress has been made. This volume brings together new leading-edge research in the field.


Advances in Superconductivity

Advances in Superconductivity

Author: Koichi Kitazawa

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 866

ISBN-13: 4431680845

DOWNLOAD EBOOK

Intense recent activity in the field of high-temperature superconductivity both in Japan and in the rest of the world was discussed at the First International Symposium on Superconductivity held in Nagoya in August 1988. Current research and development efforts by major Japanese companies in the field of high-temperature superconductivity are reported by leading company scientists, to give an overview of the high level of activity in the area. Progress in the development of new materials and recent theoretical work is reported both from Japanese and international researchers. Contributions are organized by topic, with such topics as crystal chemistry and electronic structure, processing and microstructure, tapes and thick films, wires and coils, and thin film processing and properties. Future applications of superconductivity including magnetic levitation vehicles, electronics based on Josephson junctions, power delivery, energy storage, ship propulsion and magnetic resonance imaging are particularly stressed.


Modern Aspects Of Superconductivity: Theory Of Superconductivity (Second Edition)

Modern Aspects Of Superconductivity: Theory Of Superconductivity (Second Edition)

Author: Sergei Kruchinin

Publisher: World Scientific

Published: 2021-04-14

Total Pages: 306

ISBN-13: 9811234531

DOWNLOAD EBOOK

This book is devoted to superconductivity, which is one of the most interesting problems in physics. In accordance with the outline of the book, it treats the key problems in the field of superconductivity, in particular, it discusses the mechanism(s) of superconductivity. This book is useful for researchers and graduate students in the fields of solid state physics, quantum field theory, and many-body theory.


Superconductivity

Superconductivity

Author: Muralidhar Miryala

Publisher: Nova Science Publishers

Published: 2016

Total Pages: 0

ISBN-13: 9781634837569

DOWNLOAD EBOOK

This text consists of 13 chapters each of them defining in depth the chapter subject and surveying recent developments in superconductivity. The main objective of the book is to summarise the recent advances in material science of high-Tc superconductors, specify their properties, processing, and applications.


Materials and Mechanisms of Superconductivity - High Temperature Superconductors

Materials and Mechanisms of Superconductivity - High Temperature Superconductors

Author: Yu-Sheng He

Publisher: North Holland

Published: 1997-09-12

Total Pages: 580

ISBN-13:

DOWNLOAD EBOOK

The discovery of high temperature superconductivity has not only opened many possibilities for potential technical applications, but has also provided a unique, challenging research subject for condensed matter physics and material sciences. High temperature superconductivity appears in systems with strong electron correlation and constitutes one of the key issues in condensed matter physics. The understanding of its mechanism will therefore greatly promote the future developments of this branch of science. During the last ten years great progress has been made in both fundamental and application-oriented research. Expanding knowledge of the physical properties in the superconducting as well as the normal state in preparing the way to an understanding of the underlying mechanisms. The accumulated experience in materials processing enables technical applications. All these aspects of high-Tc superconductivity and recent work on "traditional" superconductors have been exposed at the Beijing conference. The present volume is a separate edition of part I of the extensive Proceedings of the Fifth International Conference on Materials and Mechanisms of Superconductivity - High Temperature Superconductors. It contains the plenary, tutorial and invited papers, and gives a comprehensive account of the state-of-the-art as of March 1997.